Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:55:13.409Z Has data issue: false hasContentIssue false

Simultaneous stimulated Raman forward and backward scattering in hot, well-underdense plasmas

Published online by Cambridge University Press:  09 March 2009

S. J. Karttunen
Affiliation:
Technical Research Centre of Finland, Nuclear Engineering Laboratory P.O. Box 169, SF-00181 Helsinki, Finland
R. R. E. Salomaa
Affiliation:
Helsinki University of Technology, Department of Technical Physics, SF-02150 Espoo, Finland

Abstract

The competition of stimulated Raman forward scattering and backscattering in a hightemperature, underdense, nearly homogeneous plasma slab is investigated. In such plasmas Landau damping limits the growth of the Raman backscattering, and the weaker forward process may reach comparable levels. A modest seeding of one of the scattered electromagnetic waves influences the competition to a large extent. The conversion of the pump wave to scattered waves is calculated. The simultaneous operation of the two processes can lead to considerable modifications in the electron distribution; e.g., two hot tail components are formed because the plasma waves involved have different phase velocities. The generation regions of the scattering processes are spatially separated. Consequently, a large number of thermal electrons can be accelerated to very high energies in two stages. The backward plasmons preaccelerate the electrons and the faster plasmons, excited in the forward scattering, operate as a booster.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amin, M. R. & Cairns, R. A. 1990 Nucl. Fusion 30, 327.CrossRefGoogle Scholar
Bobin, J. L. 1985 Phys. Rep. 122, 173.CrossRefGoogle Scholar
Bonnaud, G. 1987 Plasma Phys. Controlled Fusion 29, 573.CrossRefGoogle Scholar
Bonnaud, G. & Reisse, C. 1986 Nucl. Fusion 26, 633.CrossRefGoogle Scholar
Cohen, B. I. 1984 Comments Plasma Phys. Controlled Fusion 8, 197.Google Scholar
Cohen, B. I. et al. 1988 Nucl. Fusion 28, 1519.CrossRefGoogle Scholar
Drake, J. F. et al. 1974 Phys. Fluids 17, 778.CrossRefGoogle Scholar
Drake, R. P. et al. 1988 Phys. Fluids 31, 1795.CrossRefGoogle Scholar
Estabrook, K. & Kruer, W. L. 1983 Phys. Fluids 26, 1892.CrossRefGoogle Scholar
Estabrook, K., Kruer, W. L. & Lasinski, B. F. 1980 Phys. Rev. Lett. 45, 1399.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1975 Phys. Fluids 18, 1002.CrossRefGoogle Scholar
Ghizzo, A. et al. 1990 J. Comput. Phys. 90, 431.CrossRefGoogle Scholar
Heikkinen, J. A. & Karttunen, S. J. 1986 Phys. Fluids 29, 1291.CrossRefGoogle Scholar
Heikkinen, J. A., Karttunen, S. J. & Salomaa, R. R. E. 1988 Nucl. Fusion 28, 1845.CrossRefGoogle Scholar
Karttunen, S. J. 1985 Laser Part. Beams 2, 157.CrossRefGoogle Scholar
Karttunen, S. J. & Salomaa, R. R. E. 1989 Europhys. Conf. Abstr. 13B, 1243.Google Scholar
Koch, P. & Williams, E. A. 1984 Phys. Fluids 27, 2346.CrossRefGoogle Scholar
Kruer, W. L. 1988 The Physics of Laser Plasma Interactions (Addison-Wesley, Reading, MA), pp. 101, 134.Google Scholar
Pättikangas, T. J. H., Karttunen, S. J. & Salomaa, R. R. E. 1989 Helsinki University of Technology Report No. TKK-F-B127.Google Scholar
Rose, H. A., DuBois, D. F. & Bezzerides, B. 1987 Phys. Rev. Lett. 58, 2547.CrossRefGoogle Scholar
Rosenbluth, M. N. & Liu, C. S. 1972 Phys. Rev. Lett. 29, 701.CrossRefGoogle Scholar
Tajima, T. 1985 Laser Part. Beams 3, 351.CrossRefGoogle Scholar
Van Der Wiel, M. J. & Van Amersfoort, P. W. 1989 Fusion Eng. Des. 11, 245.CrossRefGoogle Scholar
Villeneuve, D. M. & Baldis, H. A. 1988 Phys. Fluids 31, 1790.CrossRefGoogle Scholar
Villeneuve, D. M., Baldis, H. A. & Bernard, J. E. 1987 Phys. Rev. Lett. 59, 1585.CrossRefGoogle Scholar
Willi, O. et al. 1989 Opt. Commun. 70, 487.CrossRefGoogle Scholar