Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:24:04.497Z Has data issue: false hasContentIssue false

Simultaneous measurement of self-generated magnetic fields and electron heat transport in dense plasma

Published online by Cambridge University Press:  04 September 2013

L. Lancia*
Affiliation:
LULI, École Plytechnique, Palaiseau, France SBAI, Università di Roma ‘La Sapienza’, Rome, Italy
C. Fourment
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
J. Fuchs
Affiliation:
LULI, École Plytechnique, Palaiseau, France
J.-L. Feugeas
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
Ph. Nicolai
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
S. Bastiani-Ceccotti
Affiliation:
LULI, École Plytechnique, Palaiseau, France
M. Gauthier
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
S. Hulin
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
M. Nakatsutsumi
Affiliation:
LULI, École Plytechnique, Palaiseau, France
M. Rabec-Le-Gloahec
Affiliation:
LULI, École Plytechnique, Palaiseau, France
J.J. Santos
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
G. Schurtz
Affiliation:
Université de Bordeaux-CNRS-CEA, CELIA (Centre Lasers Intenses et Applications) UMR 5107, Talence, France
*
Address correspondence and reprint request to: L. Lancia, Department SBAI, University of Rome, La Sapienza, Via Scarpa 16 00161, Roma, Italy. E-mail: [email protected]

Abstract

The role of self generated magnetic fields in the transport of a heat wave following a nanosecond laser irradiation of a solid target is investigated. Magnetic fields are expected to localize the electron carrying the heat flux but at the same time are affected in their evolution by the heat flux itself. We performed simultaneous measurements of heat wave propagation velocity within the target and magnetic fields developing on the target surface. These were compared to results obtained by numerical magneto-hydrodynamic modeling, including self-generated B fields. The comparison shows that longitudinal heat flow is overestimated in the simulations. Similarly, but most notably, the radial expansion of the magnetic fields is underestimated by the modeling. The two are likely linked, the more pronounced radial drift of B-fields induces a rotation of heat flux in the radial direction, and corresponding longitudinal heat flux inhibition. This suggests the need for improving present modeling of self-generated magnetic fields evolution in high power laser-matter interaction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S., Schiavi, A. & Bellei, C. (2007). Targets for direct-drive fast ignition at total laser energy of 200–400 kJ. Phys. Plasmas 14, 052702.CrossRefGoogle Scholar
Braginskii, S.I. (1965). Transport Properties in a Plasma. in Review of Plasma Physics, (Leontovish, M.A., Ed.), Vol. 1, pp. 205311. New York: Consultants Bureau.Google Scholar
Cecchetti, C.A., Borghesi, M., Fuchs, J., Schurtz, G., Kar, S., Macchi, A., Romagnani, L., Wilson, P.A., Antici, P., Jung, R., Osterholtz, J., Pipahl, C.A., Willi, O., Schiavi, A., Notley, M. & Neely, D. (2009). Magnetic field measurements in laser-produced plasmas via proton deflectometry. Phys. Plasmas 16, 043102.CrossRefGoogle Scholar
Borghesi, M., Bigongiari, A., Kar, S., Macchi, A., Romagnani, L., Audebert, P., Fuchs, J., Toncian, T., Willi, O., Bulanov, S.V., Mackinnon, A.J. & Gauthier, J.C. (2008). Laser-driven proton acceleration: source optimization and radiographic applications. Plasma Phys. Control. Fusion 50, 124040.CrossRefGoogle Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-Legalloudec, N. (2004). Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 20, 204801.CrossRefGoogle ScholarPubMed
Allen, M., Patel, P., Mackinnon, A., Price, D., Wilks, S. & Morse, E. (2004). Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils. Phys. Rev. Lett. 93, 265004.CrossRefGoogle ScholarPubMed
Epperlein, E.M., Rickard, G.J. & Bell, A.R. (1988). Two-dimensional nonlocal electron transport in laser-produced plasmas. Phys. Rev. Lett. 61, 21, 24532456.CrossRefGoogle ScholarPubMed
Hauer, A., Mead, W.C., Willi, O., Kilkenny, J.D., Bradley, D.K., Tabatabaei, S.D. & Hooker, C. (1984). Measurement and analysis of near-classical thermal transport in one-micron laser-irradiated spherical plasmas. Phys. Rev. Lett. 53, 27, 25632566.CrossRefGoogle Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 1057.CrossRefGoogle Scholar
Li, C.K., Seguin, F.H., Frenje, J.A., Rygg, J.R., Petrasso, R.D., Town, R.P.J., Amendt, P.A., Hatchett, S.P., Landen, O.L., Mackinnon, A.J., Patel, P.K., Tabak, M., Smalyuk, V.A., Sangster, T.C., & Knauer, J.P. (2006). Measuring E and B Fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003.CrossRefGoogle Scholar
Luciani, J.F., Mora, P. & Pellat, R. (1985). Quasistatic heat front and delocalized heat flux. Phys. Fluids 28, 3, 835845.CrossRefGoogle Scholar
Mackinnon, A.J., Patel, P.K., Town, R.P., Edwards, M.J., Phillips, T., Lerner, S.C., Price, D.W., Hicks, D., Key, M.H., Hatchett, S., Wilks, S.C., Borghesi, M., Romagnani, L., Kar, S., Toncian, T., Pretzler, G., Willi, O., Koenig, M., Martinolli, E., Lepape, S., Benuzzi-Mounaix, A., Audebert, P., Gauthier, J.C., King, J., Snavely, R., Freeman, R.R. & Boehlly, T. (2004). Proton radiography as an electromagnetic field and density perturbation diagnostic. Rev. Sci. Instrum. 75, 10, 3531.CrossRefGoogle Scholar
Maire, P.-H., Abgrall, R., Breil, J. & Ovadia, J. (2007). A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29, 1781.CrossRefGoogle Scholar
Haines, M.G. (1986 ). Heat flux effects in Ohm's law. Plasma Phys. Cont. Fusion 28, 1705.CrossRefGoogle Scholar
Kho, T.H. & Haines, M.G., (1985). Nonlinear kinetic transport of electrons and magnetic field in laser-produced plasmas. Phys. Rev. Lett. 55, 8, 825828.CrossRefGoogle ScholarPubMed
Martinolli, E., Koenig, M., Boudenne, J.M., Perelli, E., Batani, D. & Hall, T.A. (2004). Conical crystal spectrograph for high brightness x-ray Kα spectroscopy in subpicosecond laser -solid interaction. Rev. Sci. Instrum. 75, 6, 2024.CrossRefGoogle Scholar
Mead, W.C., Campbell, E.M., Estabrook, K.G., Turner, R.E., Kruer, W.L., Lee, P.H.Y., Pruett, B., Rupert, V.C., Tirsell, K., Stradling, G.L., Ze, F., Max, C.E. & Rosen, M.D. (1981). Laser-plasma interactions at 0.53μm for disk targets of varying-Z. Phys. Rev. Lett. 47, 18, 12891292.CrossRefGoogle Scholar
Nilson, P.M., Willingale, L., Kaluza, M.C., Kampediris, C., Minardi, S., Wei, M.S., Fernandes, P., Notley, M., Bandyopadhayay, S., Sherlock, M., Kingham, R.J., Tatarakis, M., Najmudin, Z., Rosmuz, W., Evans, R.G., Haines, M.G., Dangor, A.E. & Krushelnick, K. (2006). Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97, 255001.CrossRefGoogle ScholarPubMed
Regan, S.P., Epstein, R., Goncharov, V.N., Igumenshchev, I.V., Li, D., Radha, P.B., Sawada, H., Seka, W., Boelhy, T.R., Delettrez, J.A., Gotchev, O.V., Knauer, J.P., Marozas, J.A., Marshall, F.J., Mccrory, R.L., Mckenty, P.W., Meyerhofer, D.D., Sangster, T.C., Shvartz, D., Skupsky, S., Smalyuk, V.A. & Yaakobi, B. (2007). Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion. Phys. Plasmas 14, 056305.CrossRefGoogle Scholar
Schurtz, G., Nicolai, Ph. D. & Busquet, M. (2000). A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas 7, 42384249.CrossRefGoogle Scholar
Schurtz, G., Gary, S., Hulin, S., Chenais-Popovics, C., Gauthier, J.-C., Thais, F., Breil, J., Durut, F., Feugeas, J.-L., Maire, P.-H., Nicolai, Ph. D., Peyrussse, O., Reverdin, C., Soullié, G., Tikhonchuk, V., Villette, B. & Fourment, C. (2007). Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Phys. Rev. Lett. 98, 095002.Google ScholarPubMed
Spitzer, L. & Harm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar
Stamper, J.A., Papadopoulos, S.K., Sudan, R.N., Dean, S.O., Mclean, E.A & Dawson, J.M. (1971). Spontaneous magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 26, 1012CrossRefGoogle Scholar
Stamper, J.A. & Ripin, B.H. (1975). Faraday-rotation measurements of megagauss magnetic fields in laser-produced plasmas. Phys. Rev. Letter 34, 138141.CrossRefGoogle Scholar
Stevenson, R.M., Norman, M.J., Bett, T.H., Pepler, D.A., Danson, C.N. & Ross, I.N. (1994). Opt. Lett. 19, 363365.CrossRefGoogle Scholar
Willingale, L., Thomas, A.G.R., Nilson, P.M., Kaluza, M.C., Bandyopadhyay, S., Dangor, A.E., Evans, R.G., Fernandes, P., Haines, M.G., Kampediris, C., Kingham, R.J., Minardi, S., Notley, M ., Ridgers, C.P., Rosmuz, W., Sherlock, M ., Tatarakis, M., Wei, M.S., Najmudin, Z. & Krushenick, K. (2010). Fast advection of magnetic fields by hot electrons. Phys Rev Lett. 105, 095001.CrossRefGoogle ScholarPubMed
Young, F.C., Whitlock, R.R., Decoste, R., Ripin, B.H., Nagel, D.J., Stamper, J.A., Mcmahon, J.M. & Bodner, S.E. (1977). Laser-produced-plasma energy transport through plastic films. Appl. Phys. Lett. 30, 4547.CrossRefGoogle Scholar