Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T22:48:31.439Z Has data issue: false hasContentIssue false

Simulations of full impact of the Large Hadron Collider beam with a solid graphite target

Published online by Cambridge University Press:  13 July 2009

N.A. Tahir*
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
R. Schmidt
Affiliation:
CERN–AB, Geneva, Switzerland
M. Brugger
Affiliation:
CERN–AB, Geneva, Switzerland
A. Shutov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
I.V. Lomonosov
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
A.R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
*
Address correspondence and reprint requests to: N.A. Tahir, Gesellschaft für Schwerionenforschung Darmstadt, Planckstrasse 1, 64291 Darmstadt, Germany. E-mail: [email protected]

Abstract

The Large Hadron Collider (LHC) will operate with 7 TeV/c protons with a luminosity of 1034 cm−2 s−1. This requires two beams, each with 2808 bunches. The nominal intensity per bunch is 1.15 × 1011 protons and the total energy stored in each beam is 362 MJ. In previous papers, the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected onto a copper target. Another failure scenario is the deflection of beam, or part of it, into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC close to the beam, since carbon is the material that is most suitable to absorb the beam energy without being damaged. In case of a failure, it is very likely that such absorbers are hit first, for example, when the beam is accidentally deflected. Some type of failures needs to be anticipated, such as accidental firing of injection and extraction kicker magnets leading to a wrong deflection of a few bunches. Protection of LHC equipment relies on the capture of wrongly deflected bunches with beam absorbers that are positioned close to the beam. For maximum robustness, the absorbers jaws are made out of carbon materials. It has been demonstrated experimentally and theoretically that carbon survives the impact of a few bunches expected for such failures. However, beam absorbers are not designed for major failures in the protection system, such as the beam dump kicker deflecting the entire beam by a wrong angle. Since beam absorbers are closest to the beam, it is likely that they are hit first in any case of accidental beam loss. In the present paper we present numerical simulations using carbon as target material in order to estimate the damage caused to carbon absorbers in case of major beam impact.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bangerter, R.O., MARK, J.W.-K. & Thiessen, A.R. (1982). Heavy ion inertial fusion–initial survey of target gain versus ion beam parameters. Phys. Lett. A 88, 225227.CrossRefGoogle Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. (Paris) 11, 1111.Google Scholar
Fasso, A., Ferrari, A., Roesler, S., Sala, P.R., Battistoni, G., Cerutti, F., Gadioli, E., Garzelli, M.V., Ballarini, F., Ottolenghi, A., Empl, A. & Ranft, J. (2003). The physics models of FLUKA: Status and recent developments. Conf. Computing in High Energy and Nuclear Physics (CHEP2003). March 24–28, La Jolla, California.Google Scholar
Fasso, A., Ferrari, A., Ranft, J. & Sala, P.R. (2005). FLUKA: A multi-particle transport code. CERN-2005-10, INFN/TC-05/11, SLAC-R-773.Google Scholar
Fortov, V.E., Goel, B., Munz, C.-D., Ni, A.L., Shutov, A. & Vorbiev, O.YU. (1996). Numerical simulations of non-stationary fronts and interfaces by the Godunov method in m oving grids. Nucl. Sci. Eng. 123, 169189.CrossRefGoogle Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. Meth. Phys. Res. B 214, 211215.CrossRefGoogle Scholar
Kerley, G.I. (2001). Multi-component multiphase equation-of-state for carbon. Sandia Nat. Lab. Rep. SAND2001-2619, 147.Google Scholar
Logan, B.G., Perkins, L.J. & Barnard, J.J. (2008). Direct drive heavy ion beam inertial fusion at high coupling efficiency. Phys. Plasmas 15, 072701.Google Scholar
Long, K.A. & Tahir, N.A. (1982). Heavy ion beam ICF fusion: The thermodynamics of ignition and the achievement of high gain in ICF fusion targets. Phys. Lett. A 91, 451456.Google Scholar
Long, K.A. & Tahir, N.A. (1986). Theory and calculation of the energy–loss of charged particles in inertial confinement fusion burning plasmas. Nucl. Fusion 26, 555592.CrossRefGoogle Scholar
Long, K.A. & Tahir, N.A. (1987). Range shortening, radiation transport and Rayleigh–Taylor instability phenomena in ion bean driven inertial fusion reactor–size targets–implosion, ignition and burn phases. Phys. Rev. A 35, 26312659.CrossRefGoogle Scholar
Lopez Cela, J.J., Piriz, A.R., Serna Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427435.CrossRefGoogle Scholar
Ni, P., Kulish, M.I., Mintsev, V., Nikolaev, D.N., Ternovoi, V.Y., Hoffmann, D.H.H., Udrea, S., Hug, A., Tahir, N.A. & Varentsov, D. (2008). Temperature measurement of warm dense matter generated by intense heavy ion beams. Laser Part. Beams 26, 583589.CrossRefGoogle Scholar
Piriz, A.R., Portuguez, R.F., Tahir, N.A. & Hoffmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E 66, 056403.CrossRefGoogle ScholarPubMed
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003 a). Generation of a hollow ion beam: calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501.CrossRefGoogle ScholarPubMed
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2003 b). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Contr. Fusion 45, 1733.Google Scholar
Piriz, A.R., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72, 056313.CrossRefGoogle ScholarPubMed
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275282.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2008). Richtmeyer–Meshkov instability in elastic–plastic solids. Phys. Rev. E 78, 056401.Google Scholar
Piriz, A.R. & Wouchuk, G. (1992). Energy gain of spherical shell targets in inertial confinement fusion. Nucl. Fusion 32, 933940.Google Scholar
Schmidt, R., Assmann, R., Carlier, E., Dehning, B., Denz, R., Goddard, B., Holzer, E.B., Kain, V., Puccio, B., Todd, B., Uythoven, J., Wenninger, J. & Zerlauth, M. (2006). Protection of the CERN Large Hadron Collider. New J. Phys. 8, 290.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Spiller, P., Maruhn, J.A. & Bock, R. (1999). Heavy-ion-induced hydrodynamic effects in solid targets. Phys. Rev. E 60, 47154724.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauscwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E 61, 19751980.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E 62, 12241233.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva, A., Spiller, P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E 63, 036407.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E 63, 016402.Google Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B 67, 184101.Google Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIRfacility: non–linear bunch rotation in SIS100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.Google Scholar
Tahir, N.A., Weick, H., Iwase, H., Geissel, H., Hoffmann, D.H.H., Kindler, B., Lommel, B., Radon, T., Münzenberg, G. & Sümerrer, K. (2005 a). Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR facility. J. Phys. D: Appl. Phys. 38, 18281837.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 b). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Methods Phys. Res. A 544, 1626.Google Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 c). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 d). The CERN Large Hadron Collider as a tool to study high-energy-density matter. Phys. Rev. Lett. 94, 135004.Google Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 e). Impact of 7-Tev/c Large Hadron Collider proton beam on a copper target. J. Appl. Phys. 97, 083532.Google Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Vrentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB Collaboration. Nucl. Instrum. Meth. Phys. Res. B 245, 8593.Google Scholar
Tahir, N.A., Schmidt, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 a). Prospects of high–energy–density physics research using the CERN Super Proton Synchrotron (SPS). Laser Part. Beams 25, 639647.Google Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). HEDgeHOB: High–energy–density matter generated by heavy ion beams at the future Facility for Antiprotons and Ion Research. Nucl. Instrum. Meth. Phys. Res. A 577, 238249.CrossRefGoogle Scholar
Tahir, N.A., Shutov, A., Kim, V., Matveichev, A., Ostrik, A.V., Lomonosov, I.V., Piriz, A.R. & Hoffmann, D.H.H. (2008 a). Simulatiuon of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS. Laser Part. Beams 26, 411423.Google Scholar
Tahir, N.A., Kim, V., Matveichev, A., Ostrik, A.V., Shutov, A., Lomonosov, I.V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2008 b). High energy density and beam induced stress related issues in solid graphite Super–FRS fast extraction targets. Laser Part. Beams 26, 273286.Google Scholar
Tahir, N.A., Matveichev, A., Kim, V., Ostrik, A.V., Shutov, A., Lomonosov, I.V., Sultonov, V., Piriz, A.R., Lopez Cela, J.J. & Hoffmann, D.H.H. (2009 a). Three–dimensional simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super–FRS. Laser Part. Beams 27, 917.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Shutov, A., Lomonosov, Piriz, A.R., Hoffmann, D.H.H., Deutsch, C. & Fortov, V.E. (2009 b). Large Hadron Collider at CERN: beams generating high–energy–density matter. Phys. Rev. E 79 046410.Google Scholar
Tahir, N.A. & Long, K.A. (1982). Fusion power from heavy ion imploded targets. Phys. Lett. A 90, 242247.CrossRefGoogle Scholar
Tahir, N.A. & Long, K.A. (1983). Numerical simulations and theoretical analysis of implosion, ignition and burn of heavy ion beam reactor–size ICF targets. Nucl. Fusion 23, 887916.CrossRefGoogle Scholar
Tahir, N.A. & Long, K.A. (1984). Numerical modeling of radiation Marshak waves. Laser Part. Beams 21, 371381.CrossRefGoogle Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609614.CrossRefGoogle Scholar
Temporal, M., Lopez Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.CrossRefGoogle Scholar