Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:27:07.708Z Has data issue: false hasContentIssue false

Shock pressure and free surface velocity measurements in confined interaction — Response of new VF2/VF3 piezoelectric gauges

Published online by Cambridge University Press:  09 March 2009

M. Boustie
Affiliation:
Laboratoire de Combustion et de Détonique, U.P.R. du C.N.R.S. n° 9028, E.N.S.M.A, Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
S. Couturier
Affiliation:
Laboratoire de Combustion et de Détonique, U.P.R. du C.N.R.S. n° 9028, E.N.S.M.A, Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
J.P. Romain
Affiliation:
Laboratoire de Combustion et de Détonique, U.P.R. du C.N.R.S. n° 9028, E.N.S.M.A, Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
D. Zagouri
Affiliation:
Laboratoire de Combustion et de Détonique, U.P.R. du C.N.R.S. n° 9028, E.N.S.M.A, Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
H. Simonnet
Affiliation:
Laboratoire de Combustion et de Détonique, U.P.R. du C.N.R.S. n° 9028, E.N.S.M.A, Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France

Abstract

To determine the peak pressure induced versus the incident intensity of a neodymium (Nd) glass pulsed laser, with a duration of 25 ns in glass confined geometry, two methods have been comparatively used. Free surface velocity measurements have been performed using an electromagnetic gauge. The results are compared with pressure measurements realized at the back of irradiated aluminum targets with the use of polyvinylidene fluoride (PVDF) gauges. Both diagnostics provide consistent results. The measurements of peak pressure as a function of laser irradiance are used to determine the calibration curve (current density versus loading pressure) for new VF2/VF3 copolymer shock gauges used in this lasermatter interaction configuration. These experimental set-up deliver time resolved measurements that are interpreted by the shock-propagation phenomena.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M.U. & Graham, R.A. 1990 In Proc. of PVDF Shock Sensor Workshop (Institut Saint Louis, France), p. 1.Google Scholar
Bauer, F. 1985 Metallurgical Applications of Shock Waves and High Strain Rate Phenomena (Marcel Dekker, New York), p. 1071.Google Scholar
Bauer, F. 1993 In Proc. of the Conference on Shock Waves in Condensed Matter, Schmidt, S.C. et al. , eds. (AIP Press, New York), p. 1727.Google Scholar
Bauer, F. & Lichtenberger, A. 1987 In Proc. of the Conference on Shock Waves in Condensed Matter, Schmidt, S.C. et al. , eds. (North Holland Physics Publishing, Amsterdam), p. 631.Google Scholar
Clauer, A.H. et al. 1981 In Proc. of the Conference on Shock Waves in Condensed Matter, Nellis, J. et al. , eds. (AIP Press, New York), p. 675.Google Scholar
Fabbro, R. et al. 1990 J. Appl. Phys. 68, 775.CrossRefGoogle Scholar
Fairand, B.P. et al. 1974 Appl. Phys. Lett. 25, 431.CrossRefGoogle Scholar
Fournier, J. et al. 1989 Laser Interaction with Matter, Verlade, G. et al. , eds. (World Scientific), p. 259.Google Scholar
Graham, R.A. 1987 In Proc. of the Conference on Shock Waves in Condensed Matter, Schmidt, S.C. et al. , eds. (North Holland Physics Publishing, Amsterdam), p. 619.Google Scholar
Griffin, R.D. et al. 1986 J. Appl. Phys. 59, 1968.CrossRefGoogle Scholar
O'Keefe, J.D. et al. 1969 Bull. Am. Phys. Soc. 14, 839.Google Scholar
Paisley, D.L. 1991 Shock Waves and High-Strain-Rate Phenomena in Materials, Meyers, M.A. et al. , eds. (Marcel Dekker, New York), p. 1131.Google Scholar
Paisley, D.L. 1990 Shock Compression of Condensed Matter, Schmidt, S.C. et al. , eds. (Elsevier Science Publishers, Amsterdam), p. 733.Google Scholar
Romain, J.P. & Darquey, P. 1990 J. Appl. Phys. 68, 1926.CrossRefGoogle Scholar
Sheffield, S.A. & Fisk, G.A. 1983 In Proc. of the Conference on Shock Waves in Condensed Matter, Asay, J.R. et al. , eds. (North Holland Physics Publishing, Amsterdam), p. 243.Google Scholar
Sheffield, S.A. et al. 1986 In Proc. of the Conference on Shock Waves in Condensed Matter, Gupta, Y.M., ed. (Plenum Press, New York and London), p. 541.CrossRefGoogle Scholar
Yang, L.C. & Menichelli, V.J. 1971 Appl. Phys. Lett. 19, 473.CrossRefGoogle Scholar