Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T06:36:26.988Z Has data issue: false hasContentIssue false

Self-shaping of a relativistic elliptically Gaussian laser beam in underdense plasmas

Published online by Cambridge University Press:  28 April 2015

T. W. Huang
Affiliation:
HEDPS, Center for Applied Physics and Technology and School of Physics, Peking University, Beijing, People's Republic of China
C. T. Zhou*
Affiliation:
HEDPS, Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China Science College, National University of Defense Technology, Changsha, People's Republic of China
X. T. He
Affiliation:
HEDPS, Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
*
Address correspondence and reprint requests to: C. T. Zhou, Institute of Applied Physics and Computational Mathematics, Beijing 100094, People's Republic of China. E-mail: [email protected]

Abstract

Self-shaping and propagation of intense laser beams of different radial profiles in plasmas is investigated. It is shown that when a relativistic elliptically Gaussian beam propagates through an underdense plasma, its radial profile will self-organize into a circularly symmetric self-similar smooth configuration. Such self-similar propagation can be attributed to a soliton-like structure of the laser pulse. The anisotropic electron distribution results in a circular electric field that redistributes the electrons and modulates the laser pulse to a circular radial shape.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., MacKinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Mcpherson, A., Boyer, K. & Rhodes, C.K. (1995). Stability analysis of relativistic and charge-displacement self-channelling of intense laser pulses in underdense plasmas. Plasma Phys. Control. Fusion 37, 569597.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992). Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.CrossRefGoogle ScholarPubMed
Cattani, F., Kim, A., Anderson, D. & Lisak, M. (2001). Multifilament structures in relativistic self-focusing. Phys. Rev. E 64, 016412(1–8).CrossRefGoogle ScholarPubMed
Chen, S.Y., Sarkisov, G.S., Maksimchuk, A., Wagner, R. & Umstadter, D. (1998). Evolution of a plasma waveguide created during relativistic-ponderomotive self-channeling of an intense laser pulse. Phys. Rev. Lett. 80, 26102613.CrossRefGoogle Scholar
Chen, X.L. & Sudan, R.N. (1993). Necessary and suffcient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 20822085.CrossRefGoogle Scholar
Dudley, J.M., Finot, C., Richardson, D.J. & Millot, G. (2007). Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3, 597603.CrossRefGoogle Scholar
Feit, M.D., Komashko, A.M., Musher, S.L., Rubenchik, A.M. & Turitsyn, S.K. (1998). Electron cavitation and relativistic self-focusing in underdense plasma. Phys. Rev. E 57, 71227125.CrossRefGoogle Scholar
Fibich, G. & Ilan, B. (1999). Self-focusing of elliptic beams: An example of the failure of the aberrationless approximation. J. Opt. Soc. Am. B 17, 17491758.CrossRefGoogle Scholar
Fuchs, J., Malka, G., Adam, J.C., Amiranoff, F., Baton, S.D., Blanchot, N., Héron, A., Laval, G., Miquel, J.L., Mora, P., Pépin, H. & Rousseaux, C. (1998). Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma. Phys. Rev. Lett. 80, 16581661.CrossRefGoogle Scholar
Fuchs, J., Sentoku, Y., Karsch, S., Cobble, J., Audebert, P., Kemp, A., Nikroo, A., Antici, P., Brambrink, E., Blazevic, A., Campbell, E.M., Fern¨¢ndez, J.C., Gauthier, J.C., Geissel, M., Hegelich, M., Pépin, H., Popescu, H., Renard-LeGalloudec, N., Roth, M., Schreiber, J., Stephens, R. & Cowan, T.E. (2005). Comparison of laser ion acceleration from the front and rear surfaces of thin foils. Phys. Rev. Lett. 94, 045004(1–4).CrossRefGoogle ScholarPubMed
Gross, B. & Manassah, J.T. (1992). Numerical solution for the propagation of an elliptic Gaussian beam in a Kerr medium. Phys. Lett. A 169, 371378.CrossRefGoogle Scholar
Hafizi, B., Ting, A., Sprangle, P. & Hubbard, R.F. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 41204125.CrossRefGoogle ScholarPubMed
He, X.T. & Zhou, C.T. (1993). Spatiotemporal complexity of the cubic-quintic nonlinear Schrödinger equation. J. Phys. A 26, 41234133.CrossRefGoogle Scholar
Hoffmann, D.H.H. (2008). Laser interaction with matter and heavy ion fusion. Laser Part. Beams 26, 509510.Google Scholar
Huang, T.W., Zhou, C.T. & He, X.T. (2013). Pattern dynamics and filamentation of femtosecond terawatt laser pulses in air including the higher-order Kerr effects. Phys. Rev. E 87, 053103(1–19).CrossRefGoogle ScholarPubMed
Kim, A., Tushentsov, M., Cattani, F., Anderson, D. & Lisak, M. (2002). Axisymmetric relativistic self-channeling of laser light in plasmas. Phys. Rev. E 65, 036416(1–10).CrossRefGoogle ScholarPubMed
Kurki-Suonio, T., Morrison, P.J. & Tajima, T. (1989). Self-focusing of an optical beam in a plasma. Phys. Rev. A 40, 32303239.CrossRefGoogle ScholarPubMed
Moll, K.D., Gaeta, A.L. & Fibich, G. (2003). Self-similar optical wave collapse: Observation of the townes profile. Phys. Rev. Lett. 90, 203902(1–4).CrossRefGoogle ScholarPubMed
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002(1–4).CrossRefGoogle ScholarPubMed
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Naseri, N., Bychenkov, V.Y. & Rozmus, W. (2010). Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17, 083109(1–10).CrossRefGoogle Scholar
Naseri, N., Pesme, D., Rozmus, W. & Popov, K. (2012). Channeling of relativistic laser pulses, surface waves, and electron acceleration. Phys. Rev. Lett. 108, 105001(1–4).CrossRefGoogle ScholarPubMed
Nilson, P.M., Mangles, S.P.D., Willingale, L., Kaluza, M.C., Thomas, A.G.R., Tatarakis, M., Clarke, R.J., Lancaster, K.L., Karsch, S., Schreiber, J., Najmudin, Z., Dangor, A.E. & Krushelnick, K. (2010). Plasma cavitation in ultraintense laser interactions with underdense helium plasmas. New J. Phys. 12, 045014(1–10).CrossRefGoogle Scholar
Norreys, P.A. (2009). Laser-driven particle acceleration. Nat. Photonics 3, 423425.CrossRefGoogle Scholar
Norreys, P.A., Scott, R.H.H., Lancaster, K.L., Green, J.S., Robinson, A.P.L., Sherlock, M., Evans, R.G., Haines, M.G., Kar, S., Zepf, M., Key, M.H., King, J., Ma, T., Yabuuchi, T., Wei, M.S., Beg, F.N., Nilson, P., Theobald, W., Stephens, R.B., Valente, J., Davies, J.R., Takeda, K., Azechi, H., Nakatsutsumi, M., Tanimoto, T., Kodama, R. & Tanaka, K.A. (2009). Recent fast electron energy transport experiments relevant to fast ignition inertial fusion. Nucl. Fusion 49, 104023(1–8).CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Qiao, B., Kar, S., Geissler, M., Gibbon, P., Zepf, M. & Borghesi, M. (2012). Dominance of radiation pressure in ion acceleration with linearly polarized pulses at intensities of 1021 W/cm2. Phys. Rev. Lett. 108, 115002(1–5).CrossRefGoogle Scholar
Qiao, B., Lai, C.H., Zhou, C.T., He, X.T. & Wang, X.G. (2007 a). Complex dynamics of femtosecond terawatt laser pulses in air. Appl. Phys. Lett. 91, 221114(1–3).CrossRefGoogle Scholar
Qiao, B., Lai, C.H., Zhou, C.T., He, X.T., Wang, X.G. & Yu, M.Y. (2007 b). Nonlinear properties of relativistically intense laser in plasmas. Phys. Plasmas 14, 112301(1–7).CrossRefGoogle Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Sylla, F., Flacco, A., Kahaly, S., Veltcheva, M., Lifschitz, A., Malka, V., dHumières, E., Andriyash, I. & Tikhonchuk, V. (2013). Short intense laser pulse collapse in near-critical plasma. Phys. Rev. Lett. 110, 085001(1–5).CrossRefGoogle ScholarPubMed
Wang, H.Y., Lin, C., Sheng, Z.M., Liu, B., Zhao, S., Guo, Z.Y., Lu, Y.R., He, X.T., Chen, J.E. & Yan, X.Q. (2013). Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens. Phys. Rev. Lett. 107, 265002(1–5).Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.CrossRefGoogle ScholarPubMed
Yu, M.Y., Shukla, P.K. & Spatschek, K.H. (1978). Localization of high-power laser pulses in plasmas. Phys. Rev. A 18, 15911596.CrossRefGoogle Scholar
Yu, W., Bychenkov, V., Sentoku, Y., Yu, M.Y., Sheng, Z.M. & Mima, K. (2000). Electron acceleration by a short relativistic laser pulse at the front of solid targets. Phys. Rev. Lett. 85, 570573.CrossRefGoogle Scholar
Zhou, C.T. & He, X.T. (1994). Spatial chaos and patterns in laser-produced plasmas. Phys. Rev. E 49, 44174424.CrossRefGoogle ScholarPubMed
Zhou, C.T. & He, X.T. (2007). Influence of a large oblique incident angle on energetic protons accelerated from solid-density plasmas by ultraintense laser pulses. Appl. Phys. Lett. 90, 031503(1–3).CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Cai, T.X. (1994). Pattern structures on generalized nonlinear Schrödinger equations with various nonlinear terms. Phys. Rev. E 50, 41364155.CrossRefGoogle ScholarPubMed