Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:33:04.804Z Has data issue: false hasContentIssue false

Self-focusing effect in Au-target induced by high power pulsed laser at PALS

Published online by Cambridge University Press:  30 June 2008

L. Torrisi*
Affiliation:
Dipartimento di Fisica, Università di Messina, Messina, Italy INFN-Laboratori Nazionali del Sud, Catania, Italy
D. Margarone
Affiliation:
Dipartimento di Fisica, Università di Messina, Messina, Italy INFN-Laboratori Nazionali del Sud, Catania, Italy
L. Laska
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
J. Krasa
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
A. Velyhan
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Physics, ASCR, Prague, Czech Republic
L. Ryc
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
*
Address correspondence and reprint requests to: L. Torrisi, INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania, Italy. E-mail: [email protected]

Abstract

Self-focusing effects, induced by ASTERIX pulsed laser at PALS Laboratory of Prague, have been investigated. Laser was employed at the third harmonics (438 nm) and intensities of the order of 1016 W/cm2. Pure Au was used as thin target and irradiated with 30° incidence angle. An ion energy analyzer was employed to detect the energy-to-mass ratio of emitted ions from plasma. Measurements were performed by changing the focal point position with a high spatial resolution step-motor. Results demonstrated that non linear processes, due to self-focusing effects, occurs when the laser beam is focused at about 200 µm in front of the target surface. In such conditions, a new ion group, having high charge state and kinetic energy, is produced because of the increment in temperature of the laser-generated plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bell, A.R. (1996). Laser-produced plasma. In Plasma Physics and Introduction Course (Dendy, R., ed.). New York: Cambridge University Press.Google Scholar
Giulietti, D. & Gizzi, L.A. (1998). X-ray emission from-laser-produced plasmas. Rivista Nuovo Cimento 21, 193.CrossRefGoogle Scholar
Giulietti, A., Galimberti, M., Gamucci, A., Giulietti, D., Gizzi, L.A., Koester, P., Labate, L., Tomassini, P., Ceccotti, T., D'Oliveira, P., Auguste, T., Monot, P. & Martin, P. (2007). Search for stable propagation of intense femtosecond laser pulses in gas. Laser Part. Beams 25, 513521.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowsk, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Kralikova, B., Krasa, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Badziak, J., Parys, P., Ryc, L., Szydlowski, A., Wolowski, J., Woryna, E., Ciavola, G., Gammino, S., Torrisi, L. & Boody, F.P. (2004). Review of laser ion sources developments in Prague and production of q over 50+ ions at Prague Asterix Laser System (Invited). Rev. Sci. Instr. 75, 15461550.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J., Velyhan, A., Kubes, P., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2006 a). Experimental studies of interaction of intense long laser pulse with a laser-created Ta plasma. Czech J. Phys. 56, B506B514.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Ullschmied, J.Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L. & Boody, F.P. (2006 b). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams 24, 175179.CrossRefGoogle Scholar
Laska, L., Jungwirth, K., Krasa, J., Pfeifer, M., Rohlena, K. & Ullschmied, J. (2005 a). The effect of pre-plasma and self-focusing on characteristics of laser produced ions. Czech. J. Phys. 55, 691699.CrossRefGoogle Scholar
Laska, L., Ryc, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Mezzasalma, A., Parys, P., Pfeifer, M., Rohlena, K., Torrisi, L., Ullschmied, J. & Wolowski, J. (2005 b). Correlation of highly charged ion and X-ray emissions from the laser-produced plasma in the presence of non-linear phenomena. Rad. Effects Defects Solids 160, 557566.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Malka, V., Faure, J., Glinec, Y. & Lifschitz, A.F. (2006). Laser-plasma accelerator: Status and perspectives. Phil. Trans. R. Soc. A 364, 601.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser PartT. Beams 24, 185190.CrossRefGoogle Scholar
Margarone, D., Laska, L., Torrisi, L., Gammino, S., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Ullschmied, J., Velyhan, A. (2007). Studies of craters' dimension for long-pulse laser ablation of metal targets at various experimental conditions. Appl. Surf. Sci. 254, 27972803.CrossRefGoogle Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Torrisi, L., Gammino, S., Ando, L., Mezzasalma, A.M., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J., Ullschmied, J. & Boody, F.P. (2002). Study of the etching process and crater formation induced by intense laser pulses at PALS. Czech. J. Phys. 52, 329334.Google Scholar
Woryna, E., Parys, P., Wolowski, J. & Mroz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293321.CrossRefGoogle Scholar