Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T06:21:58.470Z Has data issue: false hasContentIssue false

Self-consistent calculations of short-pulse laser-heated plasma dynamics

Published online by Cambridge University Press:  09 March 2009

P. Lädrach
Affiliation:
Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland
J. E. Balmer
Affiliation:
Institute of Applied Physics, University of Bern, CH-3012 Bern, Switzerland

Abstract

A one-dimensional, time-dependent fluid code is presented that numerically solves the hydrodynamic equations together with the wave equation for a picosecond pulse laser heated plasma. The laser light absorption by classical inverse bremsstrahlung and the ponderomotive force are evaluated self-consistently from the computed electromagnetic field quantities. At oblique incidence of p-polarized 1·054 μm laser radiation the resonant electric field is saturated by plasma wave convection through the nonlinear density profile steepening prior to wave breaking.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmer, J. E. & Donaldson, T. P. 1977 Phys. Rev. Lett. 39, 1084.CrossRefGoogle Scholar
Balmer, J. E., Donaldson, T. P., Seka, W. & Zimmermann, J. A. 1978 Opt. Comm. 24, 109.CrossRefGoogle Scholar
Denisov, N. G. 1957 Sov. Phys. JETP, 4, 544.Google Scholar
Donaldson, T. P., Balmer, J. E. & Zimmermann, J. A. 1980 J. Phys. D: Appl. Phys. 13, 12211233.Google Scholar
Estabrook, K. G., Valeo, E. J. & Kruer, W. L. 1975 Phys. Fluid, 18, 1151.CrossRefGoogle Scholar
Estabrook, K. G. & Kruer, W. L. 1978 Phys: Rev. Lett. 40, 42.Google Scholar
Forslund, D. W., Kindel, J. M., Kenneth Lee, , Lindman, E. L. & Morse, R. L. 1975 Phys. Rev. A, 11, 679.CrossRefGoogle Scholar
Ginzburg, V. L. 1970 Propagation of Electromagnetic Waves in Plasmas, p. 267. Pergamon Press, Oxford.Google Scholar
Hora, H. 1969 Phys. Fluids, 12, 182.Google Scholar
Koch, P. & Albrttton, J. 1974 Phys. Rev. Lett. 32, 1420.CrossRefGoogle Scholar
Lindl, J. D. & Kaw, P. K. 1971 Phys. Fluids, 14, 371.CrossRefGoogle Scholar
Montes, A. & Willi, O. 1982 Plasma Phys. 24, 671.Google Scholar
Mulser, P., Sigel, R. & Witkowskj, S. 1973 Physics Reports, 6C(3).Google Scholar
McWhirter, R. W. P. 1965 Plasma Diagnostic Techniques (ed. Huddlestone, R. H. and Leonard, S. L.), p. 201 Academic Press, New York.Google Scholar
Pert, G. J. 1978 Plasma Phys. 20, 175Google Scholar
Powers, L. V., Montry, G. R. & Berger, R. L. 1979 Nucl. Fusion, 19, 659.CrossRefGoogle Scholar
Richtmyer, R. D. 1957 Difference Methods for Initial Value Problems, Interscience Publishers (Tract 4), New York.Google Scholar
Speckhart, F. H. & Green, W. L. 1976 A Guide to using CSMP–the Continuous System Modeling Program, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
Speziale, T. & Catto, P. J. 1977 Phys. Fluids, 20, 990.Google Scholar
Spitzer, L. 1967 Physics of Fully Ionized Gases, Interscience Tracts (Nr 3) on Physics and Astronomy.Google Scholar