Article contents
RFNC–VNIITF multifunctional shock tube for investigating the evolution of instabilities in nonstationary gas dynamic flows
Published online by Cambridge University Press: 03 March 2004
Abstract
The design, operation, and functionality of the multifunctional shock tube (MST) facility at the Russian Federal Nuclear Center–VNIITF are described. When complete, the versatile MST consists of three different driver sections that permit the execution of three different classes of experiments on the compressible turbulent mixing of gases induced by the (1) Richtmyer–Meshkov instability (generated by a stationary shock wave with shock Mach numbers <5), (2) Rayleigh–Taylor instability (generated by compression wave such that acceleration of the interface is <105g0, where g0 = 9.8 m/s2), and (3) combined Richtmyer–Meshkov and Rayleigh–Taylor instability (generated by a nonstationary shock wave with initial pressure at the front 5 × 106 Pa and acceleration of ≤106g0 of the interface). For each of these types of experiments, the density ratio of the gases is ρ2 /ρ1 ≤ 34. Perturbations are imposed on a thin membrane, embedded in a thin wire array of microconductors that is destroyed by an electric current. In addition, various limitations of experimental techniques used in the study of interfacial instability generated turbulent mixing are also briefly discussed.
- Type
- Research Article
- Information
- Copyright
- © 2003 Cambridge University Press
References
REFERENCES
- 12
- Cited by