Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T09:15:50.741Z Has data issue: false hasContentIssue false

Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel

Published online by Cambridge University Press:  13 September 2011

H. Hora*
Affiliation:
University of New South Wales, Sydney, Australia
G.H. Miley
Affiliation:
University of Illinois, Urbana-Champaign, Illinois
K. Flippo
Affiliation:
Los Alamos National Laboratory, Los Alamos New Mexico
P. Lalousis
Affiliation:
Institute for Electronic Structure and Lasers IESL/FORTH, Heraklion, Crete, Greece
R. Castillo
Affiliation:
Campbelltown Branch, University of Western Sydney, Sydney, Australia
X. Yang
Affiliation:
University of Illinois, Urbana-Champaign, Illinois
B. Malekynia
Affiliation:
Plasma Physics Research Center, I. A. University of Poonak and Coordinated Research Project IAEA Vienna, Austria
M. Ghoranneviss
Affiliation:
Plasma Physics Research Center, I. A. University of Poonak and Coordinated Research Project IAEA Vienna, Austria
*
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney, Australia. E-mail: [email protected]

Abstract

In addition to the matured “laser inertial fusion energy” with spherical compression and thermal ignition of deuterium-tritium (DT), a very new alternative for the fast ignition scheme may have now been opened by using side-on block ignition aiming beyond the DT-fusion with igniting the neutron-free reaction of proton-boron-11 (p-11B). Measurements with laser pulses of terawatt power and ps duration led to the discovery of an anomaly of interaction, if the prepulses are cut off by a factor 108 (contrast ratio) to avoid relativistic self focusing in agreement with preceding computations. Applying this to petawatt (PW) pulses for Bobin-Chu conditions of side-on ignition of solid fusion fuel results after several improvements in energy gains of 10,000. This is in contrast to the impossible laser-ignition of p-11B by the usual spherical compression and thermal ignition. The side-on ignition is less than ten times only more difficult than for DT ignition. This is essentially based on the instant and direct conversion the optical laser energy by the nonlinear force into extremely high plasma acceleration. Genuine two-fluid hydrodynamic computations for DT are presented showing details how ps laser pulses generate a fusion flame in solid state density with an increase of the density in the thin flame region. Densities four times higher are produced automatically confirming a Rankine-Hugoniot shock wave process with an increasing thickness of the shock up to the nanosecond range and a shock velocity of 1500 km/s which is characteristic for these reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P.A., Robey, H.F., Park, H.-S, Tipton, R.E., Turner, R.E., Milovich, J.L., Bono, M., Hibbard, R., Louis, H., Wallace, R. & Glebov, V.Yu. (2005). Hohlraum-driven ignition-like double-shell implosions on the omega laser facility. Phys. Rev. Lett. 94, 065004/1–4.CrossRefGoogle Scholar
Badziak, J. (2006). Skin layer acceleration of plasmas by laser. Opt. Electr. Rev. 5, 112.Google Scholar
Badziak, J., Glovacz, S., Jablonski, S., Paris, P., Wolowski, J., Kraska, J., Laska, J., Rohlena, K. & Hora, H. (2004). Production of ultrahigh ion current densities at skin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.CrossRefGoogle ScholarPubMed
Bobin, J.L. (1974). Nuclear fusion reactions in fronts propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz, H. and Hora, H., eds.), vol. 4B, 465494. New York: Plenum Press.CrossRefGoogle Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, K. & Ullmschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.CrossRefGoogle Scholar
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 412422.CrossRefGoogle Scholar
Cowan, T.E., Parry, M.D., Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C., Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments, Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Flippo, K., Bartal, T., Beg, F., Chawla, S., Cobble, J., Gaillard, S., Hey, D., Mackinnon, A., Macphee, A., Nilson, P., Offermann, D., Le Pape, S. & Schmitt, M.J. (2010). Omega EP, laser scaling and the 60 MeV barrier: First observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. J. Phys. Conf. Ser. 244, 022033.CrossRefGoogle Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 7286.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X. (2008). Inhibition factor reduces fast ignition threshold of laser fusion using nonlinear force driven block ignition. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Glenzer, S.H., Macgowan, B.J., Michel, P., Meezan, N.B., Suter, L.J., Dixit, S.N., Kline, J.L., Kyrala, G.A., Bradley, D.K., Callahan, D.A., Dewald, E.L., Divol, L., Dzenitis, E., Edwards, M.J., Hamza, A.V., Haynam, C.A., Hinkel, D.E., Kalantar, D.H., Kilkenny, J.D., Landen, O.L., Lindl, J. D., Lepape, S., Moody, J.D., Nikroo, A., Parham, T., Schneider, M.B., Town, R.P.J., Wegner, P., Widmann, K., Whitman, P., Young, B.K.F., Van Wontherghem, B., Atherton, L.J. & Moses, E.I. (2010). Symmetric inertial confinement fusion implosions at ultra-high laser energies. Sci. 327, 12081211.Google ScholarPubMed
Glenzer, S.H., Moses, E.I., et al. (2011). Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004/1–5.CrossRefGoogle ScholarPubMed
Glowacz, S., Badziak, J., Jablonski, J. & Hora, H. (2004). Numerical modeling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Czech. J. Phys. 54, C460C467.CrossRefGoogle Scholar
Guinnessy, P. (2010). Compact underground nuclear reactors. Phys. Today 63, 2526.CrossRefGoogle Scholar
Guyot, J., Miley, G.H. & Verdeyen, (1971). First electron beam excited KrF laser. J. Appl. Phys. 43, 53795391.CrossRefGoogle Scholar
Hahn, O. & Strassmann, F. (1939). Generation of active barium isotopes from uranium by neutron irradiation. Naturwissenschaften 27, 11.Google Scholar
He, X.-T. & Li, Y.-S. (1994). Physical processes of volume ignition and thermonuclear burn for high-gain inertial confinement fusion. In Laser Interaction and Related Plasma Phenomena (Miley, G.H., ed.). New York: American Institute of Physics, 334344.Google Scholar
Holmlid, L., Hora, H., Miley, G.H. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in Plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Hora, H. (1981). Physics of Laser Driven Plasmas. New York: John Wiley.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (2000). Laser Plasma Physics — Forces and the Nonlinearity Principle. Bellingham: SPIE Press.Google Scholar
Hora, H. (2002). Fusion reactor with petawatt laser. German Patent Disclosure (Offenlegungs-schrift) DE 102 08 515 A1 (28 February 2002, declassified 5 September 2002).Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.CrossRefGoogle Scholar
Hora, H. (2009). Laser fusion with nonlinear force driven plasma blocks: Thresholds and dielectric effects. Laser Part. Beams 27, 207222.CrossRefGoogle Scholar
Hora, H. (2010). Climatic Problems and Solutions. Regensburg: S. Roderer Publisher.Google Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002 b). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Badziak, J., Glowacz, S., Jablosnki, S., Skladanowaski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., Peng, H.S., He, X.T., Zhang, W.Y., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu, Hong, Sheng, Zheng-Ming, Zhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven beams of very high intensity. Phys. Plasmas 14, 072701/1–7.CrossRefGoogle Scholar
Hora, H., Castillo, R., Clark, R.G., Kane, E.L., Lawrence, V.F., Miller, R.D.C., Nicholson-Florence, M.F., Movak, M.M., Ray, P.S., Shepanski, J.R. & Tsivinsky, A.I. (1979). Calculations of inertial confinement fusion gains using a collective model for reheat, bremsstrahlung and fuel depletion for high efficient electrodynamic compressions, Proc. 7th IAEA Conf. Plasma Physics and Thermonuclear Fusion, pp. 2330. Vienna: IAEA.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double-layers produced by nonlinear forces in laser-produced plasmas. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Lett. 93, 011101/1–3.CrossRefGoogle Scholar
Hora, H. & Miley, G.H. (2005). Edward Teller Lectures. London: Imperial College Press.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghornanneviss, M., Malekynia, B., Azizi, N. & He, X. (2010). Fusion energy without radioactivity: Laser ignition of solid density hydrogen-boron(11) fuel. Ener. Environ. Sci. 3, 479486.CrossRefGoogle Scholar
Hora, H., Miley, G.H., Ghoranneviss, M., Malekynia, B. & Azizi, N. (2009). Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear force driven plasma blocks. Opt. Commun. 282, 41244126.CrossRefGoogle Scholar
Hora, H., Osman, , Cang, Y., Badziak, J., Jablonski, S., Glowacz, S., Miley, G.H., Hammerling, P., Miley, G.H., Wolowski, J., Jungwirth, K., Rohlena, K., He, X., Peng, H. & Zhang, J. (2004). TW-ps laser driven blocks for light ion beam fusion in solid density DT, High-poer laser and applications III. SPIE 5627 5163.Google Scholar
Hora, H., Peng, H.S., Zhang, W.Y. & Osman, F. (2002 a). New Skin Depth Interaction by ps-TW Laser Pulses and Consequences for Fusion Energy, SPIE Proceedngs, Vol. 4914, Fan, Dianyuan, Truesdell, Keith A., and Yasui, Koji Eds., pp. 3748Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrift f. Naturforschung A33, 890894.CrossRefGoogle Scholar
Kaluza, M., Schreiber, J., Sandala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K. (2004). Influence of the laser prepulse on proton acceleration in thin foil experiments. Phys. Rev. Lett. 93, 045003.CrossRefGoogle ScholarPubMed
Kirkpatrick, R.C. & Wheeler, J.A. (1981). Internal confinement fusion with adiabatic pellet compression. Nucl. Fusion 21, 398.Google Scholar
Kouhi, M., Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H.Sari, A.H., Azizi, N. & Razavipour, S.S. (2011). Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11. Laser Part. Beams 29, 125138.CrossRefGoogle Scholar
Lackner, K., Colgate, S., Johnson, N.L., Kirkpatrick, R.C., Menikoff, R. & Petschek, A.G. (1994). Equilibrium ignition for ICF capsules. Laser Interaction and Related Plasma Phenomena (Miley, G.H., ed.). New York: American Institute of Physics, Volume 318 pp. 356361.Google Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Lindl, J.D. (2005). The Edward Teller Medal Lecture: The evolution toward indirect drive and two decades of progress toward ignition and burn. In Edward Teller Lectures: Laser and Inertial Fusion Energy (Hora, H. and Miley, G.H., eds.). London: Imperial College Press, 121147.CrossRefGoogle Scholar
Magill, L., Schwoerer, H., Ewald, F., Galy, F., Schenkel, R. & Sauerbrey, R. (2003). Terawatt laser pulses for transmutation of long lived nuclear waste. Appl. Phys. B 77, 387392.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K. & Umstadter, D. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle ScholarPubMed
Martinez-Val, J.-M., Eliezer, S. & Piera, M. (1994). Volume ignition for heavy-ion inertial fusion. Laser Part. Beams 12, 681717.Google Scholar
Meyerhofer, D.D., Gregori, G., Fortmann, C., Schwarz, V. & Redmer, R. (2008). Compton scattering measurements from dense plasmas. J. Phys.: Confer. Series 112, 032071.Google Scholar
Miley, G.H. (1970). Direct Conversion of Nuclear Radiation Energy. Hindsdale: American Nuclear Society and Atomic Energy Commission.Google Scholar
Miley, G.H. (1976). Fusion Energy Conversion. Hindsdale IL: American Nuclear Society and Atomic Energy Commission.Google Scholar
Miley, G.H. (2005). 1995 Edward Teller Lecture: Patience and Optimisms. In Edward Teller Lectures. London: Imperial College Press.Google Scholar
Miley, G.H., Badziak, J., Glowacz, S., Jablonski, S., Wolowski, J., Hora, H., Hammerling, P., Osman, F., Cang, C., He, X., Peng, H., Zhang, J., Jungwirth, K. & Rohlena, K. (2006). Ablation of Nonlinear-Force Driven Plasma Blocks for Fast Igniter Application, Phipps, C.P. ed., SPIE Proceedings No. 6261, 626129–1/12 (2006).Google Scholar
Miley, G.H., Hora, H., Philberth, K., Lipson, A. & Shrestha, P.J. (2010). Radiochemical comparisons on low energy nuclear reactions and uranium. In Low Energy Nuclear Reactions an New Energy Technologies Sourcebook 2 (Marwan, J. and Krivit, S.B., eds.). Oxford:Oxford University Press, 235252.Google Scholar
Moses, E. (2008). Ignition on the National Ignition Facility. J. Phys.: Confer. Series 112, 12003/1–4.Google Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. de Phys. IV 133, 916.Google Scholar
Moses, E.I. (2010). Ignition and inertial confinement fusion at the National Ignition Facility. J.Phys. – Conf. Ser. 244, 022033.CrossRefGoogle Scholar
Mourou, G. & Tajima, T. (2002). Ultraintense lasers and their applications. In Inertial Fusion Science and Applications 2001 (Tanaka, V.R., Meyerhofer, D.D., Meyer-ter-Vehn, J., eds.). Paris: Elsevier, 831839.Google Scholar
Nakai, S. (2008). Conference Report Prague May 2008, G. Mank and M. Kalal eds, IAEA Coordinated Research Program No. 13011.Google Scholar
Nuckolls, J.H. (2010). Grand challenges of inertial fusion energy. J. Phys.: Conf. Ser. 244, 012007/1–7.Google Scholar
Nuckolls, J.L. & Woods, L. (2002). Future of inertial fusion energy. In Proceedings International Conference on Nuclear Energy Systems ICNES Albuquerque, NM. 2002, edited by Mehlhorn, T.A. (Sandia National Labs., Albuquerque, NM) pp. 171176.Google Scholar
Osman, F., Hora, H., Miley, G.H. & Kelly, J.C. (2007). New aspects of low cost energy by inertia! fusion using petawatt lasers. J. Roy. Soc. New South Wales 140, 1119.Google Scholar
Park, H.-S. & Remington, B. (2011). Astrophyhsics and Space Science. Pioneers (Guillermo Velarde and Natividad Carbintero-Santamarai eds) Foxwell & Davies (UK) 2007 p. 1–50, ISBN 1-805868-10.Google Scholar
Rubbia, C. (2010). Martin Durani, Burning Ideas of a nuclear visionary. Phys. Today 23, 15.Google Scholar
Sadighi-Bonabi, R., Yazdani, E., Cang, Y. & Hora, H. (2010). Dielectric magnifying of plasma blocks by nonlinear force acceleration and with delayed electron heating. Phys. Plasmas 17, 113108/1–5.CrossRefGoogle Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Scheffel, C., Stening, R.J., Hora, H., Höpfl, R., Martinez-Val, J.-M., Eliezer, S., Kasotakis, G., Piera, M. & Sarris, E. (1997). Analysis of the retrograde hydrogen boron fusion gains at inertial confinement fusion with volume ignition. Laser Part. Beams 15, 565574.CrossRefGoogle Scholar
Soures, J.M., Mccrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A., Jacobs, S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A, Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G., Seka, W., Short, R., Shoup Iii, M.J., Skeldon, S., Skoupski, S., Schmid, A.W., Smith, D.J., Swmales, S., Wittman, M. & Yaakobi, B. (1996). Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasmas 3, 21082112.CrossRefGoogle Scholar
Storm, E., Latkowski, J.F., Farmer, J.C., Abbott, R.P., Amendt, P.A., Anklam, T.M., Caird, R.J., Deri, A.C., Erlandson, A.C., Kramer, K.J., Loosmore, G.A., Miles, R.R., Patel, P.K., Serrano De Caro, M., Shaw, F. & Tabak, M. (2009). LIFE – A laser inertial fusion-based approach to energy production, Inertial Fusion Science & Applications Conf. Sept. San Francisco, Book of summaries, p. 363.Google Scholar
Szatmari, S. & Schäfer, F.P. (1988). Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 68, 196201.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tanaka, K.A. (2009). Summary of inertial fusion sessions. Special issue: Overview and summary reports based in the 2008 fusion energy conference contributions (Geneva, Switzerland, 13–18 October 2008) Nucl. Fusion 49 104004, 1/6.Google Scholar
Teller, E. (2001). Memoirs. Cambridge: Perseus.Google Scholar
Teller, E. (2005). Edward Teller Lectures (Hora, H. and Miley, G.H., eds.). London: Imperial College Press, 5152.Google Scholar
Teubner, U., Uschmann, I., Gibbon, P., Altenbernd, D., Förester, E., Feurer, T., Theobald, W., Sauerbrey, R., Hirst, G., Key, M.H., Lister, J. & Neely, D. (1996). Absorption and hot electron production by high intensity femtosecond uv-laser pulses in solid targets. Phys. Rev. E 54, 41674177.CrossRefGoogle ScholarPubMed
Weaver, T., Zimmerman, G. & Wood, L. (1973). Exotic CTR fuel: Non-thermal effects and laser fusion application. Report UCRL-74938. Livermore: Lawrence Livermore Laboratory.Google Scholar
Yamanaka, C. & Nakai, S. (1988). Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser. Nature 319, 757759.Google Scholar
Yang, X., Miley, G.H., Flippo, K.A. & Hora, H. (2011). Energy enhancement for deuteron beam fast ignition of a pre-compressed inertial confinement fusion (ICF) target. Phys. Plasmas 18, 032703/1–5.CrossRefGoogle Scholar