Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T15:31:33.129Z Has data issue: false hasContentIssue false

Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses

Published online by Cambridge University Press:  01 April 2008

H.Y. Niu*
Affiliation:
Graduate School of China Academy of Engineering Physics, Beijing, People's Republic of China
X.T. He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, People's Republic of China
B. Qiao
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China Department of Physics, National University of Singapore, Singapore
C.T. Zhou
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China Center for Applied Physics and Technology, Peking University, Beijing, People's Republic of China Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, People's Republic of China
*
Address correspondence and reprint requests to: H.Y. Niu, Graduate School of China Academy of Engineering Physics, PO Box 2101 Beijing 100088, People's Republic of China. E-mail: [email protected]

Abstract

Resonant acceleration of plasma electrons in combined circularly polarized Gaussian laser fields and self-generated quasistatic fields has been investigated theoretically and numerically. The latter includes the radial quasistatic electric field, the azimuthal quasistatic magnetic field and the axial one. The resonant condition is theoretically given and numerically testified. The results show some of the resonant electrons are accelerated to velocities larger than the laser group velocity and thus gain high energy. For peak laser intensity I0 = 1 × 1020 W cm−2 and plasma density n0 = 0.1ncr, the relativistic electron beam with energies increased from 207 MeV to 262 MeV with a relative energy width around 24% and extreme low beam divergence less than 1° has been obtained. The effect of laser intensity and plasma density on the final energy gain of resonant electrons is also investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccheerini, F., Cecchetti, E.F., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholz, J., Schiavi, A. & Willi, O. (2007). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 25, 169–168.Google Scholar
Esarey, E., Schroeder, C.B., Cormier-Michel, E., Shadwick, B.A., Geddes, C.G.R. & Leemans, W.P. (2007). Thermal effects in plasma-based accelerators. Phys. Plasmas 14, 056707.CrossRefGoogle Scholar
Evans, R.G. (1988) Particle accelerators-the light that never was. Nature 333, 296297.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle ScholarPubMed
Gibbon, P. (2005). Short Pulse Laser Interaction with Matter-An Introduction. London: Imperial College Press.Google Scholar
Gupta, D.N. & Suk, H. (2007) Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.CrossRefGoogle ScholarPubMed
Hirshfield, J.L. & Wang, C.B. (2000). Laser-driven electron cyclotron autoresonance accelerator with production of an optically chopped electron beam. Phys. Rev. E 61, 72527255.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosemej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K., Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.CrossRefGoogle Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.X., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy of the nonlinear theory for electron acceleration in vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Hora, H., Osman, F., Castillo, R., Collins, M., Stait-Gardener, T., Chan, W.K., Hölss, M., Scheid, W., Wang, J.J. & Ho, Y.K. (2002). Laser-generated pair production and Hawking-Unruh radiation. Laser Part. Beams 20, 7986.CrossRefGoogle Scholar
Hora, H. (2007 a). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3746.CrossRefGoogle Scholar
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, C Ang, Yu, Liu Hong, Sheng, Zheng-Ming, , Zhang, J., Osmanm, F., Mi-Ley, G.H., Zhang, Wei-Yan., He, Xian-Tu, Peng, Han-Sheng, Glowacz, S., Jablonski, G., Wolowski, J., Skladanovski, Z., Jungwirth, K., Rohlena, K. & Ulschmied, J. (2007 b). Fast ignition by laser driven particle beams of very high intensity. Phys., Plasmas 14, 072701072717.CrossRefGoogle Scholar
Joshi, C. & Katsouleas, T. (2003). Plasma Accelerators at the Energy Frontier and on Tabletops. Phys. Today 56(6), 4753.CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionized high-Z material by radially polarized ultr-relativistic laser pulses. Laser Part. Beams 25, 371378.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tamaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle ScholarPubMed
Kong, Q., Miyazaki, S., Kawata, S., Miyauchi, K., Nakajima, K., Masuda, S., Miyanaga, N. & Ho, Y.K. (2003). Electron bunch acceleration and trapping by the ponderomotive force of an intense short-pulse laser. Phys. Plasmas 10, 46054608.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2005). Ponderomotive effect on electron acceleration by plasma wave and betatron resonance in short pulse laser. Phys. Plasmas 12, 043103.CrossRefGoogle Scholar
Liu, H., He, X.T. & Chen, S.G. (2004). Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields. Phys. Rev. E 66, 066409.CrossRefGoogle Scholar
Liu, H., He, X.T. & Hora, H. (2006). Additional acceleration and colliation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Appl. Phys. B: Lasers Opt. 82, 9397.CrossRefGoogle Scholar
Mckinstrie, C.J. & Startsev, E.A. (1996). Electron acceleration by a laser pulse in a plasma. Phys. Rev. E 54, R1070R1073.CrossRefGoogle ScholarPubMed
Nuckolls, J.L. & Wood, L. (2002) Future of Inertial Fusion Energy, LLNL Preprint UCRL-JC-149860, Sept. 2002, (available to the public www.ntis.gov/).Google Scholar
Nuckolls, J.L. & Woods, L. (2002) Future of Inertial Fusion Energy. Proceedings International Conference on Nuclear Energy Systems ICNES Albuquerque, NM. 2002, edited by Mehlhorn, T.A. (Sandia National Labs., Albuquerque, NM) p.171176.Google Scholar
Pukhov, A. & Meyer-ter-vehn, J. (1996). Relativistic Magnetic Self-Channeling of Light in Near-Critical Plasma: Three-Dimensional Particle-in-Cell Simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Pukhov, A., Sheng, Z.M. & Meyer-terr-vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.CrossRefGoogle Scholar
Qiao, B., He, X.T., Zhu, S.P. & Zheng, C.Y. (2005 a). Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma. Phys. Plasmas 12, 083102.CrossRefGoogle Scholar
Qiao, B., Zhu, S.P., He, X.T. & Zheng, C.Y. (2005 b). Quasistatic magnetic and electric fields generated in intense laser plasma interaction. Phys. Plasmas 12, 053104.CrossRefGoogle Scholar
Quesnel, B. & Mora, P. (1998). Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Phys. Rev. E 58, 37193723.CrossRefGoogle Scholar
Salamin, Y.I., Hu, S.X., Hatsagortsyan, K.Z. & Keitel, C.H. (2006). Relativistic high-power laser-matter interactions. Phys. Reports 427, 41155.CrossRefGoogle Scholar
Scheid, W., & Hora, H. (1989) On electromagnetic acceleration by plane transverse electromagnetic pulses in vacuum. Laser Part. Beams 7, 315332.CrossRefGoogle Scholar
Schmitz, M. & Kull, H.J. (2002). Single-Electron Model of Direct Laser Acceleration in Plasma Channels. Laser Phys. 12, 443448.Google Scholar
Sheng, Z.M. & Meyer-ter-vehn, J. (1996). Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E 54, 18331842.CrossRefGoogle ScholarPubMed
Stait-Gardner, T., & Castillo, R. (2006) Difference between Hawking-Unruh radiation derived from studies about pair production by lasers in vacuum. Laser Part. Beams 24, 579604.CrossRefGoogle Scholar
Siders, C.W., Leblanc, S.P., Fisher, D., Tajima, T., Downer, M.C., Babine, A., Stepanov, A. & Sergeev, A. (1996). Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry. Phys. Rev. Lett. 76, 35703573.CrossRefGoogle ScholarPubMed
Stupakov, G.V. & Zolotorev, M.S. (2001). Ponderomotive Laser Acceleration and Focusing in Vacuum for Generation of Attosecond Electron Bunches. Phys. Rev. Lett. 86, 52745277.CrossRefGoogle ScholarPubMed
Tabak, M., Ammer, J.H., Glinsky, M.E., Kruer, W.L., Wilke, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tajima, T.T. & Dawson, J.M. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Tsakiris, G.D., Gahn, C. & Tripathi, V.K. (2000). Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 30173030.CrossRefGoogle Scholar
Xu, J.J., Kong, Q., Chen, Z., Wang, P.X., Wang, W., Lin, D. & Ho, Y.K. (2007) Polarization effect on vacuum laser acceleration. Laser Part. Beams 25, 253258.CrossRefGoogle Scholar
Yu, M.Y., Yu, W., Chen, Z.Y., Zhang, J., Yin, Y., Cao, L.H., Lu, P.X. & Xu, Z.Z. (2003). Electron acceleration by an intense short-pulse laser in underdense plasma. Phys. Plasmas 10, 24682474.CrossRefGoogle Scholar
Zheng, C.Y., He, X.T. & Zhu, S.P. (2005). Magnetic field generation and relativistic electron dynamics in circularly polarized intense laser interaction with dense plasma. Phys. Plasmas 12, 044505.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2006). A comparison of ultrarelativsic electron- and positron-bunch propagation in plasmas. Phys. Plasmas 13, 092109.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar