Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T16:50:01.208Z Has data issue: false hasContentIssue false

Relativistic shock waves in the laboratory

Published online by Cambridge University Press:  22 February 2013

Shalom Eliezer*
Affiliation:
Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain Applied Physics Division, Soreq NRC, Yavne, Israel
Jose Maria Martinez Val
Affiliation:
Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain
Shirly Vinikman Pinhasi
Affiliation:
Applied Physics Division, Soreq NRC, Yavne, Israel
*
Address correspondence and reprint requests to: Shalom Eliezer, Soreq. E-mail: [email protected]

Abstract

Due to the recent developments in high power lasers in the multi-petawatt domain it seems now feasible to accelerate a micro-foil to relativistic velocities. In this paper, we calculate analytically the high velocities achieved by the ponderomotive force of the irradiating laser. The accelerated foil collides with a second foil resulting in the creation of the relativistic shock waves. The density, pressure, temperature, and shock wave velocities are calculated within the context of relativistic fluid dynamics. The calculated thermodynamic parameters that are achieved in these collisions are enormous.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H., Sakaiya, T., Watari, T., Karasik, M., et al. (2009). Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision. Phys. Rev. Lett. 102, 235002.CrossRefGoogle ScholarPubMed
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 2102.CrossRefGoogle ScholarPubMed
Eliezer, S & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.CrossRefGoogle Scholar
Eliezer, S. & Hora, H. (1989). Double layers in laser produced plasmas. Phys. Rpt. 172, 339407.Google Scholar
Eliezer, S. & Ricci, R.A. (1991). High-Pressure Equations of State: Theory and Applications, Enrico Fermi international School of Physics, 1989. Amsterdam: North-Holland Publications.Google Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol: Institute of Physics Publishing.CrossRefGoogle Scholar
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225232.CrossRefGoogle Scholar
Eliezer, S., Ghatak, A. & Hora, H. (2002). Fundamentals of Equations of State. Singapore: World Scientific.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion generation in the laser piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Hora, H. (2012). Fundamental difference of picosecond to nanosecond laser interaction with plasmas: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils. Laser Part. Beams 30, 325328.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in laser produced plasmas. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Lalousis, P., Földes, I. & Hora, H. (2012). Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics. Oxford: Pergamon Press.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Yu. (2000). Forward ion acceleration in thin films driven by a high intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle ScholarPubMed
Marx, G. (1966) Interstellar vehicle propelled by terrestrial laser beam. Nat. 211, 2223.CrossRefGoogle Scholar
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF impact fast ignition. Nucl. Fusion 46, 99103.CrossRefGoogle Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Phys. Rev. Lett. 102, 025002.CrossRefGoogle Scholar
Redding, J.L. (1967). Interstellar vehicle propelled by terrestrial laser beam. Nat. 213, 588589.CrossRefGoogle Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021/1–13.CrossRefGoogle Scholar
Simmons, J.F.L. & McInnes, C.R. (1993). Was Marx right? Or how efficient are laser driven interstellar spacecraft? Am. J. Phys. 61, 205207.CrossRefGoogle Scholar
Tajima, T. & Mourou, G. (2002). Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST Accel. Beams 5, 031301.CrossRefGoogle Scholar
Taub, A.H. (1948). Relativistic Rankine-Hugoniot Equations. Phys Rev. 74, 328334.CrossRefGoogle Scholar
Weinberg, S. (1972). Gravitation and Cosmology. New York: John Wiley & Sons.Google Scholar