Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T19:50:51.464Z Has data issue: false hasContentIssue false

Relativistic channeling of a linearly polarized laser pulse in overdense plasma

Published online by Cambridge University Press:  15 June 2012

Min Sup Hur
Affiliation:
School of Electrical and Computer Engineering, UNIST, Ulsan, Korea
Young-Kuk Kim
Affiliation:
School of Electrical and Computer Engineering, UNIST, Ulsan, Korea
Victor V. Kulagin
Affiliation:
Sternberg Astronomical Institute, Moscow State University, Moscow, Russia
Hyyong Suk*
Affiliation:
APRI, GIST, Buk-gu, Gwangju, Korea
*
Address correspondence and reprint requests to: Hyyong Suk, APRI, GIST, 261 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712, Korea. E-mail: [email protected]

Abstract

We investigated a dynamic procedure for relativistic channeling by a linearly polarized ultraintense laser pulse in overdense plasma, subsequently determining a phenomenological formula for the channel-digging speed. Channeling of the linearly polarized pulse usually results in a sharp-cut (non-adiabatic) pulse front, since the pulse is continuously reflected on the transparency-opacity interface during the channeling process. Using the novel formula for the channel-digging speed, it was possible to analytically predict where such a sharp-cut occurs longitudinally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A.I. & Polovin, R.V. (1956). Theory of wave motion of an electron plasma. Sov. Phys. JETP 3 696705.Google Scholar
Bourdier, A. & Fortin, X. (1979). Nonlinear linearly polarized standing waves in a cold-electron overdense plasma. Phys. Rev. A 20, 2154.Google Scholar
Bulanov, S.V., Esirkepov, T.J., Naumova, N.M., Pegoraro, F., Pogorelsky, I.V. & Pukhov, A.M. (1996). Controlled wake field acceleration via laser pulse shaping. IEEE Trans. Plasma Sci. 24, 393399.Google Scholar
Eremin, V.I., Korzhimanov, A.V. & Kim, A.V. (2010). Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: Why it occurs and its use for ultrashort electron bunch generation. Phys. Plasmas 17, 043102.Google Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernández, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Goloviznin, V.V. & Schep, T.J. (2000). Self-induced transparency in plasmas with sharp boundary. Laser Part. Beams 18, 361365.Google Scholar
Henig, A., Kiefer, D., Markey, K., Gautier, D.C., Flippo, K.A., Letzring, S., Johnson, R.P., Shimada, T., Yin, L., Albright, B.J., Bowers, K.J., Fernández, J.C., Rykovanov, S.G., Wu, H.-C., Zepf, M., Jung, D., Liechtenstein, V.Kh., Schreiber, J., Habs, D. & Hegelich, B.M. (2009). Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002.CrossRefGoogle ScholarPubMed
Ji, L.L., Shen, B.F., Zhang, X.M., Wang, F.C., Jin, Z.Y., Xia, C.Q., Wen, M., Wang, W.P., Xu, J.C. & Yu, M.Y. (2009). Generating quasi-single-cycle relativistic laser pulses by laser-foil interaction. Phys. Rev. Lett. 103, 215005.CrossRefGoogle ScholarPubMed
Kaw, P.K., Sen, A. & Katsouleas, T. (1992). Nonlinear 1D laser pulse solitons in a plasma. Phys. Rev. Lett. 68, 3172.CrossRefGoogle ScholarPubMed
Kim, A., Cattani, F., Anderson, D. & Lisak, M. (2000). New regime of anomalous penetration of relativistically strong laser radiation into an overdense plasma. JETP Lett. 72, 241.Google Scholar
Kozlov, V.A., Litvak, A.G. & Suvorov, E.V. (1979). Envelope solitons of relativistic strong electromagnetic waves. Sov. Phys. JETP 49, 7580.Google Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Lai, C.S. (1976). Strong transverse electromagnetic waves in overdense plasmas. Phys. Rev. Lett. 36, 966.Google Scholar
Lefebvre, E. & Bonnaud, G. (1995). Transparency/opacity of a solid target illuminated by an ultrahigh-intensity laser pulse. Phys. Rev. Lett. 74, 2002.Google Scholar
Lefebvre, E. & Bonnaud, G. (1997). Nonlinear electron heating in ultrahigh-intensity-laser–plasma interaction. Phys. Rev. E 55, 1011.Google Scholar
Marburger, J.H. & Tooper, R.F. (1975). Nonlinear optical standing waves in overdense plasmas. Phys. Rev. Lett. 35, 1001.Google Scholar
Max, C. & Perkins, F. (1971). Strong electromagnetic waves in overdense plasmas. Phys. Rev. Lett. 27, 1342.CrossRefGoogle Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002.CrossRefGoogle Scholar
Ping, Y., Shepherd, R., Lasinski, B.F., Tabak, M., Chen, H., Chung, H.K., Fournier, K.B., Hansen, S.B., Kemp, A., Liedahl, D.A., Widmann, K., Wilks, S.C., Rozmus, W. & Sherlock, M. (2008). Absorption of short laser pulses on solid targets in the ultrarelativistic regime. Phys. Rev. Lett. 100, 085004.CrossRefGoogle ScholarPubMed
Reed, S.A., Matsuoka, T., Bulanov, S., Tampo, M., Chvykov, V., Kalintchenko, G., Rousseau, P., Yanovsky, V., Kodama, R., Litzenberg, D.W., Krushelnick, K. & Maksimchuk, A. (2009). Relativistic plasma shutter for ultraintense laser pulses. Appl. Phys. Lett. 94, 201117.Google Scholar
Schlegel, T., Naumova, N., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses. Phys. Plasmas 16, 083103.Google Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22,175181.Google Scholar
Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., HÖrlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-Ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Tushentsov, M., Kim, A., Cattani, F., Anderson, D. & Lisak, M. (2001). Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions. Phys. Rev. Lett. 87, 275002.CrossRefGoogle ScholarPubMed
Vshivkov, V.A., Naumova, N.M., Pegoraro, F. & Bulanov, S.V. (1998). Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5, 2727.CrossRefGoogle Scholar
Willingale, L., Nagel, S.R., Thomas, A.G.R., Bellei, C., Clarke, R.J., Dangor, A.E., Heathcote, R., Kaluza, M.C., Kamperidis, C., Kneip, S., Krushelnick, K., Lopes, N., Mangles, S.P.D., Nazarov, W., Nilson, P.M. & Najmudin, Z. (2009). Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125002.CrossRefGoogle ScholarPubMed
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulse. Phys. Rev. Lett. 69, 1383.Google Scholar