Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T19:20:14.591Z Has data issue: false hasContentIssue false

Reactive pulsed laser ablation: Plasma studies

Published online by Cambridge University Press:  08 June 2006

RAJ K. THAREJA
Affiliation:
Department of Physics and Centre for Laser Technology, Indian Institute of Technology Kanpur, India
A.K. SHARMA
Affiliation:
Department of Physics and Centre for Laser Technology, Indian Institute of Technology Kanpur, India

Abstract

We report on the pulsed laser ablation of aluminum (Al) plasma in presence of ambient nitrogen to understand the formation of aluminum nitride (AlN). Formation of carbon nitride (CN) and titanium oxide (TiO) by pulsed laser-ablation of graphite and titanium targets in presence of ambient nitrogen and oxygen is also compared. We discuss the dynamics of plasma expansion based on existing models, shock and drag models, and the plasma gas interface distortion, Rayleigh-Taylor instability at various ambient pressures of nitrogen. Since Rayleigh-Taylor instability may give rise to self-generated magnetic field in the plasma, an attempt is made to understand the mechanism of generation as well as the estimation of this field near the focal spot using the information from the images of the expanding plasma. This is the first time images of the expanding plume are used to estimate self generated magnetic fields. At the irradiance level used in the experiment the field is high very close to the target surface therefore we expect splitting of the energy levels thus giving rise to emissions that may be anisotropic in nature. We discuss the extent of anisotropy by measuring the degree of polarization using emission intensity in optical emission spectrum of selected Al III transition 4s 2S1/2–4p 2P3/2o at 569.6 nm using both nanosecond and picosecond pulses.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abhilasha, Prasad, P.S.R., &Thareja, R.K. (1993). Laser-produced carbon plasma in an ambient gas. Phys. Rev. E48, 29292933.CrossRefGoogle Scholar
Armstrong, R.A., Lucht, R.A. & Rawlins, W.T. (1983). Spectroscopic investigation of laser-initiated low-pressure plasmas in atmospheric gases. Appl. Opt. 22, 15731577.CrossRefGoogle Scholar
Baranov, V.Yu., Derkach, O.N., Grishina, V.G., Kanevskii, M.F. & Sebrant, A.Yu. (1993). Dynamics and stability of an expanding laser-induced plasma in a low-density gas. Phys. Rev. E48, 13241330.Google Scholar
Bashkin, S. & Stoner, J.O., Jr. (1975). Atomic Energy Levels and Grotrian Diagrams Vol. I. Amsterdam: North-Holland.
Berardi, V., Amoruso, S., Spinelli, N., Armenante, M., Velotta, R., Fuso, F., Allegrini, M. & Arimondo, E. (1994). Diagnostics of YBa2Cu3O7–δ laser plume by time-of-flight mass spectrometry. J. Appl. Phys. 76, 80778087.CrossRefGoogle Scholar
Bird, R.S., McKee, L.L., Schwirzke, F. & Cooper, A.W. (1973). Pressure dependence of self-generated magnetic fields in laser-produced plasmas. Phys. Rev. A7, 13281331.CrossRefGoogle Scholar
Case, R.S., Jr. & Schwirzke, F. (1975). Background gas pressure dependence and spatial variation of spontaneously generated magnetic fields in laser-produced plasmas. J. Appl. Phys. 46, 14931498.CrossRefGoogle Scholar
Drouet, M.G. & Bolton, R. (1976). Distribution of self-generated current in laser-produced plasmas. Phys. Rev. Lett. 36, 591594.CrossRefGoogle Scholar
Dwivedi, R.K. (1997). Laser Ablated Plumes For Thin Carbon Film Deposition. PhD Thesis. Kanpur, India: Indian Institute of Technology.
Dyer, P.E., Issa, A. & Key, P.H. (1990). Dynamics of excimer laser ablation of superconductors in an oxygen environment. Appl. Phys. Lett. 57, 186188.CrossRefGoogle Scholar
Edwards, D.F., Korobkin, V.V., Motilyov, S.L. & Serov, R.V. (1977). Self-generated magnetic fields in laser-produced plasmas for metallic targets. Phys. Rev. A16, 24372440.CrossRefGoogle Scholar
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S., Ezersky V., &Eliezer, D. (2005). Nanoparticles and nanotubes induced by femtosecond lasers. Laser Part. Beams 23, 1519.CrossRefGoogle Scholar
Freiwald, D.A. & Axford, R.A. (1975). Approximate spherical blast theory including source mass. J. Appl. Phys. 46, 11711174.CrossRefGoogle Scholar
Fujimoto, T., Koike, F., Sakimoto, K., Okasaka, R., Kawasaki, K., Takiyama, K., Oda, T. & Kato, T. (1992). Atomic processes relevant to polarization plasma spectroscopy. nifs-data-16. NIFS Data Series, Nagoya, Japan.
Geohegan, D.B., Puretzky, A.A., Duscher, G. & Pennycook, S.J. (1998). Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation. Appl. Phys. Lett. 72, 29872989.CrossRefGoogle Scholar
Geohegan, D.B. (1992). Fast intensified-CCD photography of YBa2Cu3O7–x laser ablation in vacuum and ambient oxygen. Appl. Phys. Lett. 60, 27322734.CrossRefGoogle Scholar
Hermann, J. & Dutouquet, C. (1999). Analyses of gas-phase reactions during reactive laser ablation using emission spectroscopy. J. Phys. D: Appl. Phys. 32, 27072713.CrossRefGoogle Scholar
Hermann, J., Perrone A., &Dutouquet, C. (2001). Analyses of the TiO-γ system for temperature measurements in a laser-induced plasma. J. Phys. B. 34, 153164.CrossRefGoogle Scholar
Jagannadham, K., Sharma, A.K., Wei, Q., Kalyanraman, R. & Narayan, J. (1998). Structural characteristics of AlN films deposited by pulsed laser deposition and reactive magnetron sputtering: A comparative study. J. Vac. Sci. Technol. A16, 28042815.CrossRefGoogle Scholar
Kawachi, T., Murai, K., Yuan, G., Ninomiya, S., Kodama, R., Daido, H., Kato, Y. & Fujimoto, T. (1995). Observation of polarization of the soft X-ray laser line in neonlike germanium ions. Phys. Rev. Lett. 75, 38263829.CrossRefGoogle Scholar
Kerdja, T., Abdelli, S., Ghobrini, D. & Malek, S. (1996). Dynamics of laser-produced carbon plasma in an inert atmosphere. J. Appl. Phys. 80, 53655371.CrossRefGoogle Scholar
Kieffer, J.C., Matte, J.P., Pépin, H., Chaker, M., Beaudoin, Y. & Johnston, T.W. (1992). Electron distribution anisotropy in laser-produced plasmas from X-ray line polarization measurements. Phys. Rev. Lett. 68, 480483.CrossRefGoogle Scholar
Kim, J. & Kim, D.-E. (2002). Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas. Phys. Rev. E66, 1740117404.Google Scholar
Knudtson, J.T., Green, W.B. & Sutton, D.G. (1987). The UV-visible spectroscopy of laser-produced Al plasmas. J. Appl. Phys. 61, 47714780.CrossRefGoogle Scholar
Lee, Y. & Brenner, D.W. (2004). First principles prediction of the gas-phase precursors for AlN sublimation growth. Phys. Rev. Lett. 92, 7550375506.Google Scholar
Lochte-Holtgreven, W. (1968). Plasma Diagnostics. Amsterdam: North-Holland.
Mima, K., Tajima, T. & Leboeuf, J.N. (1978). Magnetic field generation by the rayleigh-taylor instability. Phys. Rev. Lett. 41 17151719.CrossRefGoogle Scholar
Misra, A., Mitra, A. & Thareja R.K. (1999). Diagnostics of laser ablated plasmas using fast photography. Appl. Phys. Lett. 74, 929931.CrossRefGoogle Scholar
Misra, A. & Thareja, R.K. (1999a). Laser ablation deposition of metal oxides/nitrides films at room temperature. J. Appl. Phys. 86, 34383441.Google Scholar
Misra, A. & Thareja, R.K. (1999b). Investigation of laser ablated plumes using fast photography. IEEE Trans.Plasma Sci. 27, 15531558.Google Scholar
Narayanan, V. & Thareja, R.K. (2004). Emission spectroscopy of laser-ablated Si plasma related to nanoparticle formation. Appl. Surf. Sci. 222, 382393.CrossRefGoogle Scholar
Neogi, A. (1999). Temporal and Spatial Evolution of Laser Ablated Carbon Plasma in Ambient Gas and Magnetic Field. PhD. Thesis. Kanpur, India: Indian Institute of Technology.
Neogi, A., Mishra, A. & Thareja, R.K. (1998). Dynamics of laser produced carbon plasma expanding in low pressure ambient atmosphere. J. Appl. Phys. 83, 28312834.CrossRefGoogle Scholar
Neogi, A. & Thareja, R.K. (2001). Instabilities in laser-produced carbon plasma expanding in non-uniform magnetic field. Appl. Phys. B72, 231235.CrossRefGoogle Scholar
Ohkoshi, M., Toshitake, T. & Tsushima, K. (1994). Dynamics of laser-ablated iron in nitrogen atmosphere. Appl. Phys. Lett. 64, 33403342.CrossRefGoogle Scholar
Rafique, M.S., Khaleeq-Ur-Rahman, M., Anwar, M.S., Ashfaq, F.M.A. & Siraj, K. (2005). Angular distribution and forward peaking of laser produced plasma ions. Laser Part. Beams 23, 131135.Google Scholar
Ramirez, J., Ramis, R. & Sanz, J. (2004). One-dimensional model for a laser-ablated slab under acceleration. Laser Part. Beams 22, 183188.Google Scholar
Ren, Z.M., Lu, Y.F., Goh, Y.W., Chong, T.C., Ng, M.L., Wang, J.P., Cheong, B.A. & Liew, Y.F. (2000). Deposition of AlN thin films with cubic crystal structures on silicon substrates at room temperature. Jpn. J. Appl. Phys. 39, L423L425.Google Scholar
Sharma, A.K. & Thareja, R.K. (2000). Pulsed laser ablation of Al in the presence of nitrogen: Formation of Al nitride. J. Appl. Phys. 88, 73347338.CrossRefGoogle Scholar
Sharma, A.K. & Thareja, R.K. (2004). Characterization of laser-produced Al plasma in ambient atmosphere of nitrogen using fast photography. Appl. Phys. Lett. 84, 44904492.CrossRefGoogle Scholar
Sharma, A.K. & Thareja, R.K. (2005). Plume dynamics of laser-produced Al plasma in ambient nitrogen. Appl. Surf. Sci. 243, 6875.CrossRefGoogle Scholar
Sharma, A.K. (2004). Formation and Characterization of Nitrides and Oxides During Reactive Pulsed Laser Ablation. PhD Thesis. Kanpur, India: Indian Institute of Technology.
Simmons, J.D. & McDonald, J.K. (1972). The emission spectrum of AlN. J. Mol. Spec. 41, 584594.CrossRefGoogle Scholar
Sircar, A., Dwivedi, R.K. & Thareja, R.K. (1996). Laser induced breakdown of Ar, N2 and O2 gases using 1.064, 0.532, 0.355 and 0.266 μm radiation. Appl. Phys. B63, 623627.Google Scholar
Stamper, J.A., Papadopoules, K., Sudan, R.N., Dean, S.O., McLean, E.A. & Dawson, J.M. (1971). Spontaneous magnetic fields in laser-produced plasmas. Phys. Rev. Lett. 26, 10121015.CrossRefGoogle Scholar
Stamper, J.A. & Tidman, D.A. (1973). Magnetic field generation due to radiation pressure in a laser-produced plasma. Phys. Fluids 16, 20242025.CrossRefGoogle Scholar
Stamper, J.A., McLean, E.A., Obenschain, S.P., Griem, H.R., Manka, C.K., Droemer, D.W. & Herbst, M.J. (1982). Generation of enhanced-scalelength plasmas and Zeeman studies of magnetic fields. Report No. 4898. Naval Research Laboratory: Washington, D.C.
Striganov, A.R. & Sventitskii, N.S. (1968). Tables of Spectral Lines of Neutral and Ionized Atoms. New York: Plenum.CrossRef
Schwirzke, F. (1974). Laser Interaction and Related Plasma Phenomena. In Laser-matter Interactions (Schwarz H., andHora H., Eds.), Vol. 3A. New York: Plenum.
Thareja, R.K., Dwivedi, R.K. & Ebihara, K. (2002). Interaction of ambient nitrogen gas and laser ablated carbon plume: Formation of CN. Nucl. Instr. And Meth. In Phys. Res. B192, 301310.CrossRefGoogle Scholar
Thareja, R.K., Misra, A. & Franklin, S.R. (1998). Investigation of laser ablated metal and polymer plasmas in ambient gas using fast photography. Spectrochim. Acta Part B53, 19191930.CrossRefGoogle Scholar
Tidman, D.A. & Burton, L.L. (1976). Magnetic field generation by ablation waves or shocks propagating in inhomogeneous plasma. Phys. Rev. Lett. 37, 13971399.CrossRefGoogle Scholar
Timm, R., Willmott, P.R. & Huber, J.R. (1996). Ablation and blow-off characteristics at 248 nm of Al, Sn and Ti targets used for thin film pulsed laser deposition. J. Appl. Phys. 80, 17941802.CrossRefGoogle Scholar
Toftmann, B., Shou, J., Hansen, T.N. & Lunney, J.G. (2000). angular distribution of electron temperature and density in a laser-ablation plume. Phys. Rev. Lett. 84, 39984001.CrossRefGoogle Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Wang, P.-N., Pan, Q., Cheung, N.H. & Chen, S.-C. (1999). Study on the interaction between the laser-ablated Al plume and the nitrogen discharge plasma by time- and space-resolved spectroscopy. Appl. Spectrosc. 53, 205209.CrossRefGoogle Scholar
Yavas, O., Maddocks, E.L., Papantonakis, M.R. & Haglund, R.F., Jr. (1997). Shock-wave generation during rear- and front-side ablation of calcite. Appl. Phys. Lett. 71, 12871289.CrossRefGoogle Scholar
Yoneda, H., Hasegawa, N., Kawana, S-I & Ueda, K-I (1997). Large anisotropy of the electron distribution function in the high-density plasma produced by an ultrashort-pulse UV laser. Phys. Rev. E56, 988991.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena Vol. I. New York: Academic.