Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T04:33:31.941Z Has data issue: false hasContentIssue false

Rayleigh–Taylor instability in multi-structured inertial confinement fusion targets

Published online by Cambridge University Press:  09 March 2009

N. K. Gupta
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India.
S. V. Lawande
Affiliation:
Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India.

Abstract

A formalism for the analysis of the Rayleigh–Taylor instability in the multi-structured solid or shell targets is presented. The formulation covers both the plane and the curved geometry targets. A generalized eigenvalue equation for the exponential growth rate of the instability is derived along with the necessary boundary conditions. Analytical solutions for the growth rate are presented for some elementary density profiles and a comparative study is made between the plane, cylindrical and spherical targets. The solution for the step function density profile is generalized for any number Nof zones forming an arbitrary density profile. This general formulation is illustrated with the explicit calculations for N = 3 and 4. A qualitative treatment of the effects of the ablative flow is also presented. This study predicts a stabilizing effect of the ablative flow on the growth of the instability. Further, a dynamic analysis of the instability growth rate is presented for a representative inertial confinement fusion spherical solid target driven by the laser beams. This study demonstrates that an approximate analysis of the instability with the time independent initial density profile gives the conservative results for the instability growth rate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, B. 1985 Phys. fluids 28, 387.CrossRefGoogle Scholar
Babchin, A. J. et al. 1983 Phys. fluids 26, 3159.CrossRefGoogle Scholar
Baker, L. 1983 Phys. fluids 26, 627.CrossRefGoogle Scholar
Baker, L. 1983a Phys. fluids 26, 391.CrossRefGoogle Scholar
Bellman, R. & Pennington, R. H. 1954 Quart. Appl. Math. 12, 154.CrossRefGoogle Scholar
Bernstein, I. B. & Book, D. L. 1983 Phys. fluids 26, 453.CrossRefGoogle Scholar
Binnie, A. M. 1953 Proc. Camb. Phil. Soc. 49, 151.CrossRefGoogle Scholar
Bodner, S. E. 1974 Phys. Rev. Lett. 33, 761.CrossRefGoogle Scholar
Bodner, S. E., Emery, M. H. & Gardner, J. H. 1987 Plasma Phys. Controlled Fusion 29, 1333.CrossRefGoogle Scholar
Book, D. L. & Bernstein, I. B. 1980 J. Plasma Phys. 23, 521.CrossRefGoogle Scholar
Brueckner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.CrossRefGoogle Scholar
Brueckner, K. A., Jorna, S. & Janda, R. 1974 Phys. Fluids 17, 1554.CrossRefGoogle Scholar
Chakraborty, B. B., Nayak, A. R. & Iyenger, S. K. H. 1983 J. Plasma Phys. 30, 193.CrossRefGoogle Scholar
Chandrasekhar, S. 1968 Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London.Google Scholar
Chang, C. T. 1959 Phys. Fluids 2, 656.CrossRefGoogle Scholar
Christiansen, J. P., Ashby, D. E. T. F. & Roberts, K. V. 1974 Comput. Phys. Commun. 7, 271.CrossRefGoogle Scholar
Cicchitelli, L. et al. 1988 Laser and Particle Beams 6, 163.CrossRefGoogle Scholar
Cole, A. J. et al. 1982 Nature 299, 329.CrossRefGoogle Scholar
Colombant, D. G. &l Manheimer, W. M. 1983 Phys. Fluids 26, 3127.CrossRefGoogle Scholar
Daly, B. J. 1969 Phys. Fluids 12, 1340.CrossRefGoogle Scholar
Elliott, L. A. 1965 Proc. Roy. Soc. (London) A284, 397.Google Scholar
Emery, M. H., Gardner, J. H. & Boris, J. P. 1982 Phys. Rev. Lett. 48, 677.CrossRefGoogle Scholar
Emmons, H. W., Chang, C. T. & Watson, B. C. 1960 J. Fluid Mechanics 7, 177.CrossRefGoogle Scholar
Evans, R. G., Bennett, A. J. & Pert, G. J. 1982 Phys. Rev. Lett. 49, 1639.CrossRefGoogle Scholar
Evans, R. G. 1986 Plasma Phys. Controlled Fusion, 28, 1021.CrossRefGoogle Scholar
Freeman, J. R., Clauser, M. J. & Thompson, S. L. 1977 Nucl. Fusion 17, 223.CrossRefGoogle Scholar
Gamalil, E. G. et al. 1980 Sov. Phys. JETP 52, 230.Google Scholar
Goldmann, E. B. 1973 Plasma Phys. 15, 289.CrossRefGoogle Scholar
Grun, J. et al. 1984 Phys. Rev. Lett. 53, 1352.CrossRefGoogle Scholar
Gupta, N. K. & Lawande, S. V. 1983 Numerical Simulation of Laser Driven Fusion, BARC/I-776.Google Scholar
Gupta, N. K. & Lawande, S. V. 1985 Effect of tail in one dimensional numerical simulation of laser driven fusion, Proc. 1st Symposium on Quantum Electronics, Jan. 14–16, BARC.Google Scholar
Gupta, N. K. & Lawande, S. V. 1986a Plasma Phys. Controlled Fusion 28, 267.CrossRefGoogle Scholar
Gupta, N. K. & Lawande, S. V. 1986b Phys. Rev. A33, 2813.CrossRefGoogle Scholar
Gupta, N. K. & Lawande, S. V. 1986c Plasma Phys. Controlled Fusion 28, 925.CrossRefGoogle Scholar
Gupta, N. K. & Lawande, S. V. 1987 Phys. Rev. A36, 413.CrossRefGoogle Scholar
Henderson, D. B. & Morse, R. L. 1974 Phys. Rev. Lett. 32, 355.CrossRefGoogle Scholar
Hively, L. M. 1983 Nucl. Technology/Fusion 3, 199.Google Scholar
Hora, H. et al. 1988 Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G. H. eds., Plenum, New York Vol. 8.Google Scholar
HsiehD, Y. D, Y. & Ho, S. P. 1981 Phys. Fluids 24, 202.CrossRefGoogle Scholar
Hunt, J. N. 1961 Appl. Sci. Res. A10, 59.CrossRefGoogle Scholar
Jacobs, H. 1985 Nucl. Technology 71, 131.CrossRefGoogle Scholar
Kidder, R. E. 1976 Nucl. Fusion 16, 3.CrossRefGoogle Scholar
Kull, H. J. & Anisimov, S. I. 1986 Phys. Fluids 29, 2067.CrossRefGoogle Scholar
Kull, H. J. 1985 Phys. Rev. A31, 540.CrossRefGoogle Scholar
kull, H. J. 1986 Laser and Particle Beams 4, 473.CrossRefGoogle Scholar
Lewis, D. J. 1950 Proc. Roy. Soc. (London) A202, 81.Google Scholar
Lindi, J. D. & Mead, W. C. 1975 Phys. Rev. Lett. 34, 1273.CrossRefGoogle Scholar
Manheimer, W. M., Colombant, D. G. & Otte, E. 1984 Phys. Fluids 27, 2164.CrossRefGoogle Scholar
Mikaelian, K. O. 1982 Phys. Rev. A26, 2140.CrossRefGoogle Scholar
Mikaelian, K. O. & Lindi, J. D. 1984 Phys. Rev. A29, 290.CrossRefGoogle Scholar
Mulser, P. 1988 Laser and Particle Beams 6, 119.CrossRefGoogle Scholar
Murphy, G. M. 1960 Ordinary Differential Equations and their Solutions, D. van Nostrand New York.Google Scholar
Nuckolls, J. H. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Plesset, M. S. 1954 J. Appl. Phys. 25, 96.CrossRefGoogle Scholar
Plesset, M. S. & Whipple, C. G. 1974 Phys. Fluids 17, 1.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Proc. London Math. Soc. 14, 170; reprinted in Scientific papers, Cambridge, Vol. II, pp. 200 1900.Google Scholar
Shiau, J. N., Goldman, E. B. & Weng, C. I. 1974 Phys. Rev. Lett. 32, 352.CrossRefGoogle Scholar
Takabe, H. & Mima, K. 1980 J. Phys. Soc. Japan 48, 1793.CrossRefGoogle Scholar
Takabe, H., Montierth, L. & Morse, R. L. 1983 Phys. Fluids 26, 2299.CrossRefGoogle Scholar
Taylor, G. I. 1950 Proc. Roy. Soc. (London) A201, 192.Google Scholar
Verdon, C. P. et al. 1982 Phys. Fluids 25, 1653.CrossRefGoogle Scholar
Winterberg, F. 1980 Z. Physik A296, 3.CrossRefGoogle Scholar
Yabe, T. & Niu, K. 1976 J. Phys. Soc. Japan 40, 1164.CrossRefGoogle Scholar
Yamanka, C. & Nakai, S. 1986 Nature 319, 757.CrossRefGoogle Scholar