Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T20:05:33.312Z Has data issue: false hasContentIssue false

Radiative reaction effect on electron dynamics in an ultra intense laser field

Published online by Cambridge University Press:  21 January 2010

Q.Q. Mao
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
Q. Kong*
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
Y.K. Ho
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
H.O. Che
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
H.Y. Ban
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
Y.J. Gu
Affiliation:
Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai, China
S. Kawata
Affiliation:
Department of Electrical and Electronic Engineering, Utsunomiya University, Utsunomiya, Japan
*
Address correspondence and reprint requests to: Q. Kong, Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Institute of Modern Physics, Fudan University, Shanghai 200433, China. E-mail: [email protected]

Abstract

The radiative reaction effect of an electron is usually very small and can be neglected in most cases. But for an ultra intensity laser-electron interaction region, the radiation can become large. The influence of the radiative reaction effect of an electron interacting with an ultra intense laser pulses in vacuum on electron dynamics is investigated within the classical relativistic Lorentz-Dirac approach. A predictor-corrector method is proposed to numerically solve the equation of motion with the electron radiative reaction included. We study the counter-propagating case (for Thomson scattering scheme) and the same direction propagating cases (for laser acceleration). Our simulation results show that radiation can have great effect in the counter-propagating case. But in the vacuum laser electron acceleration regime, both the ponderomotive acceleration scenario case and the capture and acceleration scenario, radiative reaction effect can totally be ignored for laser intensity available presently or in the near-future.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Chouffani, K., Harmon, F., Wells, D., Jones, J. & Lancaster, G. (2006). Laser-compton scattering as a tool for electron beam diagnostics. Laser Part. Beams 24, 411419.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Dirac, P.A.M. (1938). Classical theory of radiating electrons. Proc. Roy. Soc. London Ser. A 167, 148169.Google Scholar
Dombi, P., Racz, P. & Bodi, B. (2009). Surface plasmon enhanced electron acceleration with few-cycle laser pulses. Laser Part. Beam 27, 291296.CrossRefGoogle Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., Mckenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions. Laser Part. Beams 27, 243248.CrossRefGoogle Scholar
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasimonoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Ferná Ndez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. 439, 441444.CrossRefGoogle ScholarPubMed
Hildebrand, F.B. (1974). Introduction to Numerical Analysis. New York: McGraw-Hill.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.W., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Hu, G.Y., Zhang, J.Y., Zheng, J., Shen, B.F., Liu, S.Y., Yang, J.M., Ding, Y.K., Hu, X., Huang, Y.X., Du, H.B., Yi, R.Q., Lei, A.L. & Xu, Z.Z. (2008). Angular distribution and conversion of multi-KeV L-shell X-ray sources produced from nanosecond laser irradiated thick-foil targets. Laser Part. Beams 26, 661670.CrossRefGoogle Scholar
Jackson, J.D. (1975). Classical Electrodynamics. New York: John Wiley & Sons.Google Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense shortpulse laser. Laser Part. Beams 23, 6167.CrossRefGoogle Scholar
Kolacek, K., Schmidt, J., Prukner, V., Frolov, O. & Straus, J. (2008). Ways to discharge-based soft X-ray lasers with the wavelength lambda < 15 nm. Laser Part. Beams 26, 167178.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.CrossRefGoogle Scholar
Landau, L.D. & Lifschitz, E.M. (1994). The Classical Theory of Fields. New York: Pergamon.Google Scholar
Lee, K. & Cha, Y.H. (2003). Relativistic nonlinear Thomson scattering as attosecond x-ray source. Phys. Rev. E 67, 026502.CrossRefGoogle ScholarPubMed
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Lin, D., Ho, Y.K., Kong, Q., Chen, Z., Wang, P.X., Xu, J.J. & Kawata, S. (2007). Bifurcating energy-angular spectrum of electrons accelerated by intense laser pulse. Laser Part. Beams 25, 365370.CrossRefGoogle Scholar
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.CrossRefGoogle Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 3314.CrossRefGoogle Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.CrossRefGoogle Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.CrossRefGoogle Scholar
Ozaki, T., Bom, L.E. & Ganeev, R.A. (2008). Extending the capabilities of ablation harmonies to shorter wavelengths and higher intensity. Laser Part. Beams 26, 235240.CrossRefGoogle Scholar
Priebe, G., Laundy, D., Macdonald, M.A., Diakun, G.P., Jamison, S.P., Jones, L.B., Holder, D.J., Smith, S.L., Phillips, P.J., Fell, B.D., Sheehy, B., Naumova, N., Sokolov, I.V., Ter-Avetisyan, S., Spohr, K., Krafft, G.A., Rosenzweig, J.B., Schramm, U., Gruner, F., Hirst, G.J., Collier, J., Chattopadhyay, S. & Seddon, E.A. (2008). Inverse Compton backscattering source driven by the multi-10 TW laser installed at Daresbury. Laser Part. Beams 26, 649660.CrossRefGoogle Scholar
Rohrlich, F. (1995). Classical Charged Particles. Reading, MA: Addison-Wesley.Google Scholar
Rohrlich, F. (2001). The correct equation of motion of a classical point charge. Phys. Lett. A 283, 276278.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sadighi-Bonabi, R., Navid, H.A. & Zobdeh, P. (2009). Observation of quasi mono-energetic electron bunches in the new ellipsoid cavity model. Laser Part. Beams 27, 223231.CrossRefGoogle Scholar
Shi, Y.J. (2007). Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.CrossRefGoogle Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams 22, 175181.CrossRefGoogle Scholar
Singh, K.P. & Malik, H.K. (2008). Resonant enhancement of electron energy by frequency chirp during, laser acceleration in an azimuthal magnetic field in a plasma. Laser Part. Beams 26, 363369.CrossRefGoogle Scholar
Stupakov, G.V. & Zolotorev, M.S. (2001). Ponderomotive Laser Acceleration and Focusing in Vacuum for Generation of Attosecond Electron Bunches. Phys. Rev. Lett. 86, 52745277.CrossRefGoogle ScholarPubMed
Toncian, T., Borghesi, M., Fuchs, J., D'humiè Res, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Sci. 312, 410413.CrossRefGoogle ScholarPubMed
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.CrossRefGoogle Scholar
Wang, P.X., Ho, Y.K., Yuan, X.Q., Kong, Q., Cao, N. & Shao, L. (2002). Characteristics of laser-driven electron acceleration in vacuum. J. Appl. Phys. 91, 856866.CrossRefGoogle Scholar
Xie, B.S., Aimidula, A., Niu, J.S., Liu, J. & Yu, M.Y. (2009). Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.CrossRefGoogle Scholar
Xu, J.J., Ho, Y.K., Kong, Q., Chen, Z., Wang, P.X., Wang, W. & Lin, D. (2005). Properties of electron acceleration by a circularly polarized laser in vacuum. J. Appl. Phys. 98, 056105.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar
Yu, W., Cao, L., Yu, M.Y., Cai, H., Xu, H., Yang, X., Lei, A., Tanaka, K.A. & Kodama, R. (2009). Plasma channeling by multiple short-pulse lasers. Laser Part. Beams 27, 109114.CrossRefGoogle Scholar
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti : Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar