Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T19:21:55.215Z Has data issue: false hasContentIssue false

Possibility of amplification of a femtosecond pulse up to he energy 1 kJ

Published online by Cambridge University Press:  09 March 2009

L. D. Mikheev
Affiliation:
P. N. Lebedev Physics Institute, Academy of Sciences of Russia, Leninsky prospect 53 Moscow 117924, Russia

Abstract

Optically excited active medium at XeF(A)transition(λ = 481 nm) is considered from the viewpoint of its possible application in ultrashort (down to 10 fs) light pulses amplification due to the extremely wide amplification band of the transition. Photolytical pumping of XeF(C–A)by pulsed discharge or shock wave radiation allows one to amplify light beams with the cross-section at least upto ∼1 m2. Taking into account strong bulk and surface nonlinear effects at high-power density, it seemsfeasible to get the output energy up to ∼ 1 kJ and the power density in the focal spot up to 1023 W/cm2. Consideration of spatial-time distributionof the excited XeF(C) molecules, formed in the XeF;2 photodissociation wave under the action of powerful optical pumping, shows a possibility in principle to design multipass amplifiers with the inversion running wave, which are intended for the amplification of ultrashort pulsesup to the energies noted above.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andre, M. et al. 1991 Amplification and focusing of a picosecond chirped pulse up to 20 Terawatt and 5× 1018 Watt/cm2.Procof the IAEA Technical Committee Meeting on Drivers for Inertial ConfinementFusion(Osaka, Japan).Google Scholar
Anisimov, S.V. et al. 1989 Spectrally selective dynamic actinometry of the VUV radiation from a moving gas dynamic discontinuity. Preprint 140 (in Russian) P.N. Lebedev Physics Inst., USSR Acad. Sci. (Moscow).Google Scholar
Basov, N.G. et al. 1979 Sov. J. Quantum Electron. 9, 629.CrossRefGoogle Scholar
Beverly, R.E. III. 1986 J. Appl. Phys. 60, 104.CrossRefGoogle Scholar
Bibinov, N.K. et al. 1981 Sov. J. Quantum Electron. 11, 1178.CrossRefGoogle Scholar
Bischel, W.K. et al. 1981 J. Appl. Phys. 52, 4429.CrossRefGoogle Scholar
Black, G. et al. 1981 J. Chem. Phys. 75, 4840.CrossRefGoogle Scholar
Borovich, B.L. et al. 1972 Sov. J. Quantum Electron. 2, 160.CrossRefGoogle Scholar
Borovich, B.L. et al. 1973 ZhETF 64, 1184.Google Scholar
Brashears, H.C.& Setser, D.W. 1982 J. Chem. Phys. 76, 4932.CrossRefGoogle Scholar
Bugrimov, S.N. et al. 1986 Sov. J. Quantum Electron. 16, 44.CrossRefGoogle Scholar
Cicchitelli, L. et al. 1991 Laser Interaction and Related Plasma Phenomena, Hora, H. and Miley, G.H. eds. (Plenum, New York) Vol. 9, p. 467.CrossRefGoogle Scholar
Fisher, C.H.& Center, R.E., 1978 J. Chem. Phys. 69, 2011.CrossRefGoogle Scholar
Hora, H. 1991 CERN July.Google Scholar
Kashiwabara, S. et al. 1987 J. Appl. Phys. 63, 787.CrossRefGoogle Scholar
Mekheev, L.D. 1986 Gas lasers in visible and UV optical regions pumped by an open discharge. Proc. of the Workshop on Iodine Laser and Application.(Prague, Czechoslovakia).Google Scholar
Stavrovskii, D.B. 1987 PhD thesis (in Russian), P.N. Lebedev Physics Inst., USSR Acad. Sci. (Moscow).Google Scholar
Taylor, A. et al. 1990 Optics Letters 15, 39.CrossRefGoogle Scholar
Watanabe, M. et al. 1990 Optics Letters 15, 845.CrossRefGoogle Scholar
Zuev, V.S. et al. 1989 Sov. J. Quantum Electron. 19, 16.CrossRefGoogle Scholar
Zuev, V.S. & Mikheev, L.D. 1990 Fellow-traveller waves of a different nature in photochemical lasers and their possible application. Preprint 190. P.N. Lebedev Physics Inst., USSR Acad.Sci. (Moscow).Google Scholar
Zuev, V.S. et al. 1984 Sov. J. Quantum Electron. 14, 1174.CrossRefGoogle Scholar