Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T08:09:15.402Z Has data issue: false hasContentIssue false

Plasma-filled diode in the electron accelerator on base of a pulsed linear transformer

Published online by Cambridge University Press:  14 October 2010

B.M. Kovalchuk
Affiliation:
Institute of High Current Electronics, Siberian Division of Russian Academy of Science, Tomsk, Russia
A.A. Zherlitsyn*
Affiliation:
Institute of High Current Electronics, Siberian Division of Russian Academy of Science, Tomsk, Russia
N.N. Pedin
Affiliation:
Institute of High Current Electronics, Siberian Division of Russian Academy of Science, Tomsk, Russia
*
Address correspondence and reprint requests to: A.A. Zherlitsyn, 2/3 Academichesky Ave., 634055, Tomsk, Russia. E-mail: [email protected]

Abstract

Technique of a linear transformer allows now to build the generators of high power nanosecond pulses with the current rise time of ~100 ns without intermediate power compression stages. This technique is being examined for use in high current high voltage pulsed accelerators. Plasma-filled diode has several advantages over standard vacuum diode that allow to improve the accelerators parameters. In this paper, plasma-filled diode experiments are described on generation of e-beam in the linear transformer accelerator. Possibility of use in the diode of isolated parallel plasma channels has been proven for the e-beam generation with cross-sectional area up to 50 cm2. The beam with current of 100 kA at voltage more than 400 kV was generated in the plasma-filled diode. Energy transmission efficiency from primary storage into a beam is about 54%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullin, E.N., Bazhenov, G.I., Bastrikov, A.N., Bugaev, S.P., Kim, A.A., Kovalchuk, B.M., Kokshenev, V.A., Mesyats, G.A. & Suchushin, K.N. (1985). High current plasma filled diode in opening switch mode. Sov. Plasma Phys. 11, 109110.Google Scholar
Bailey, V.L., Creedon, J.M., Ecker, B.M. & Helava, H.I. (1983). Intense relativistic electron beam injector system for tokamak current drive. J. Appl. Phys. 54, 16561665.CrossRefGoogle Scholar
Bastrikov, A.N., Vizir, V.A., Volkov, S.N., Durakov, V.G., Efremov, A.M., Zorin, V.B., Kim, A.A., Kovalchuk, B.M., Kumpyak, E.V., Loginov, S.V., Sinebryukhov, V.A., Tsou, N.V., Chervyakov, V.V., Yakovlev, V.P. & Mesyats, G.A. (2003). Primary energy storages based on linear transformer stages. Laser Part. Beams 21, 295299.CrossRefGoogle Scholar
Belomyttsev, S.Ya., Grishkov, A.A., Zherlitsyn, A.A. & Kovalchuk, B.M. (2009). Application of a cylindrical diode as a load with vacuum insulation in high-voltage generators. Instr. & Exper. Techniq. 52, 16.Google Scholar
Kim, A.A., Bastrikov, A.N., Volkov, S.N., Durakov, V.G., Kovalchuk, B.M. & Sinebryukhov, V.A. (2003). 1 MV ultrafast LTD generator. Proc. 16th IEEE Int. Pulsed Power Conference, pp. 853854. Dallas, Texas.Google Scholar
Kim, A.A., Bastrikov, A.N., Kovalchuk, B.M., Volkov, S.N., Durakov, V.G., Kumpjak, E.V., Sinebryukhov, V.A. & Tsou, N.V. (2005). LTD technology of primary energy storage. Proc. 15th Int. Conf. on High Power Particle Beams, pp. 1823. Saint-Petersburg.Google Scholar
Mazarakis, M.G., Fowler, W.E., McDaniel, D.H., Olson, C.L., Rogowski, S.T., Sharpe, R.A., Struve, K.W., Stygar, W.A., Kim, A.A., Sinebryukhov, V.A., Gilgenbach, R.M. & Gomez, M.R. (2007). High current linear transformer driver (LTD) experiments. Proc. 16th IEEE Int. Pulsed Power Conference, pp. 222225. Albuquerque, New Mexico.Google Scholar
Meger, R.A., Comisso, R.J., Cooperstein, G. & Goldstein, S.A. (1983). Vacuum inductive store/pulse compression experiments on a high power accelerator using plasma opening switches. Appl. Phys. Lett. 42, 943945.CrossRefGoogle Scholar
Miller, P.A., Poukey, J.W. & Wright, T.P. (1975). Electron beam generation in plasma-filled diodes. Phys. Rev. Lett. 35, 940943.Google Scholar
Suladze, K.V., Tskhadaya, B.A. & Plyutto, A.A. (1969). Features of formation of intense electron beams in a bounded plasma. JETP Lett. 10, 180181.Google Scholar
Weber, B.V., Boller, J.R., Cooperstein, G., Kellogg, J.C., Stephanakis, S.J. & Swanekamp, S.B. (1993). Plasma filled diode experiments on Gamble II. Proc. 9th IEEE Int. Pulsed Power Conference, pp. 802804. Albuquerque, New Mexico.Google Scholar
Weber, B.V., Hinshelwood, D.D., Murphy, D.P., Stephanakis, S.J. & Harper-Slaboszewicz, V. (2004). Plasma-filled diode for high dose-rate bremsstrahlung. IEEE Trans. on plasma science. 32, 19982003.CrossRefGoogle Scholar
Weber, B.V., Allen, R.J., Commisso, R.J., Cooperstein, G., Hinshelwood, D.D., Mosher, D., Murphy, D.P., Ottinger, P.F., Phipps, D.G., Schumer, J.W., Stephanakis, S.J., Swanekamp, S.B., Threadgold, J.R., Biddle, L.A., Clough, S.G., Jones, A., Sinclair, M.A., Swatton, D., Carden, T. & Oliver, B.V. (2008). Radiographic properties of plasma-filled rod-pinch diodes. IEEE Trans. on plasma science. 36, 443456.CrossRefGoogle Scholar
Zherlitsyn, A.A., Kovalchuk, B.M., Smorudov, G.V., Tsoy, N.V., Visir, V.A. & Zorin, V.B. (2008). Air insulated LTD for E-beam diode. Proc. 15th Int. Symp. High Current Electronics, pp. 296298, Tomsk.Google Scholar
Zherlitsyn, A.A., Kovalchuk, B.M. & Smorudov, G.V. (2009). Capacitor units with air insulation for linear transformers. Instr. & Exper. Techniq. 52, 802813.CrossRefGoogle Scholar