Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T04:07:21.743Z Has data issue: false hasContentIssue false

Pico- and microsecond laser ablation of dental restorative materials

Published online by Cambridge University Press:  06 March 2006

V. WIEGER
Affiliation:
Photonics Institute, Vienna University of Technology, Vienna, Austria
M. STRASSL
Affiliation:
Photonics Institute, Vienna University of Technology, Vienna, Austria
E. WINTNER
Affiliation:
Photonics Institute, Vienna University of Technology, Vienna, Austria

Abstract

For biological hard tissues as well as for artificial restoration materials, ultra-short laser pulses (USLP) have proven their suitability for ablation with negligible collateral damage providing many advantages. For this paper, it was the aim to investigate the suitability of scanned USLP for the ablation of dental restorative materials compared to the microsecond pulses of conventional Erbium lasers. Scanning electron microscopy allowed analyzing the quality of the cavity surfaces with respect to structural properties as well as temperature exposition. Quantitative results about the ablation efficiency are given for different laser parameters on dental hard tissue and a broad variety of dental restoration materials, the latter being reported for the first time.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bäcker, A. (2004). Ablation of Dental Hard Tissue by Scanned Ultra-Short Laser Pulses. Diploma Thesis, Vienna University of Technology.
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Strati, F., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prag, A., Nishimura, H., Ochi, Y., Kilpio, A., Shashkov, E., Stuchebrukhov, I., Vovchenko, V. &, Krasuyk, I. (2003). Shock pressure induced by 0.44 μm laser radiation on aluminum targets. Laser Part. Beams 21, 481487.Google Scholar
Da Silva, L.B., Stuart, B.C., Celliers, P.M., Chang, T.D., Feit, M.D., Glinsky, M.E., Heredia, N.J., Herman, S., Lane, S.M., London, R.A., Matthews, D.L., Neev, J., Perry, M.D. & Rubenchik, A.M. (1997). Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers. Proc. SPIE 2681, 196200.Google Scholar
Feith, M.D., Rubenchik, A.M. & Shore, B.W. (1996). Unique aspects of laser energy deposition in the fs pulse regime. Proc. SPIE 2672, 243249.Google Scholar
Fuerbach, A., Fernandez, A., Apolonski, A., Fuji, T. & Krausz, F. (2005). Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses. Laser Part. Beams 23, 113116.Google Scholar
Gamaly, E.G., Luther-Davies, B., Kolev, V.Z., Madsen, N.R., Duering, M. & Rode, A.V. (2005). Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams 23, 167176.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.Google Scholar
Kohns, P., Zhou, P., Schulz, H. & Willms, L. (1997). Ablation von zahnhartsubstanz mit femtosekunden-laserimpulsen. ZWR 106, 115118.Google Scholar
Komashko, A.M., Feit, M.D., Rubenchik, A.M., Perry, M.D. & Banks, P.S. (1999). Simulation of material removal efficiency with ultrashort laser pulses. Appl. Phys. A 69, 9598.Google Scholar
London, R.A., Bailey, D.S., Young, D.A., Alley, W.E., Feit, M.D. & Rubenchik, A.M. (1996). Hydrodynamic model for ultra-short pulse ablation of hard dental tissue. Proc. SPIE 2672, 231242.Google Scholar
Meister, J., Apel, C., Franzen, R. & Gutknecht, N. (2003). Influence of the spatial beam profile on hard tissue ablation part I: Multimode emitting Er:YAG lasers. Lasers Med. Sci. 18, 112118.Google Scholar
Mindermann, A., Niemz, M.H., Eisenmann, L., Loesel, F.H. & Bille, J.F. (1993). Comparison of three different laser systems for application in dentistry. Proc. SPIE 2080, 6876.Google Scholar
Neev, J., Huynh, D.S., Dan, C.C., White, J.M., Da Silva, L.B., Feith, M.D., Matthews, D.L., Perry, M.D., Rubenchik, A.M. & Stuart, B.C. (1996). Scanning electron microscopy and ablation rates of hard dental tissue using 350 fs and 1 ns laser pulses. Proc. SPIE 2672, 250261.Google Scholar
Niemz, M. (1998). Laser-Tissue-Interactions: Fundamentals and Applications. Berlin: Springer.
Niemz, M.H., Kasenbacher, A., Strassl, M., Bäcker, A., Beyertt, A., Nickel, D. & Giesen, A. (2004). Tooth ablation using a CPA-free thin disk femtosecond laser system. Appl. Phys. B 79, 269271.Google Scholar
Rubenchik, A.M., Da Silva, L.B., Feit, M.D., Lane, S., London, R., Perry, M.D., Stuart, B.C. & Neev, J. (1996). Dental tissue processing with ultra-short pulse laser. Proc. SPIE 2672, 222230.Google Scholar
Serafetinides, A.A., Makropoulou, M.I., Kar, A.K. & Khabbaz, M. (1998). Picosecond and femtosecond ablation of hard tissues. Proc. SPIE 2922, 200208.Google Scholar
Serbin, J., Bauer, T., Fallnich, C., Kasenbacher, A. & Arnold, W.H. (2002). Femtosecond lasers as novel tool in dental surgery. Appl. Surf. Sci. 197198.
Strassl, M., Bäcker, A., Beyerrt, A., Kasenbacher, A., Deyerler, M., Giesen, A., Wernisch, J., Moritz, A. &, Wintner, E. (2005a). Cavity preparation by scanning of ultra-short laser pulses. To be published.
Strassl, M., Kasenbacher, A. & Wintner, E. (2002). Ultra-short laser pulses in dentistry. J. Oral Laser Appl. 2, 213222.Google Scholar
Strassl, M., Kopecek, H., Weinrotter, MA, Baecker, A., Al-Janabi, A.H.A., Wieger, V. & Wintner, E. (2005b). Novel applications of short and ultra-short pulses. Appl. Surf. Sci. 247, 561570.Google Scholar
Strassl, M., Üblacker, B., Bäcker, A., Beer, F., Moritz, A. & Wintner, E. (2004). Comparison of the emission characteristics of three erbium laser systems—A physical case report. J. Oral Laser Appl. 4, 263270.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2-2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Vogel, A. & Venugopalan, V. (2003). Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577644.Google Scholar