Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T01:54:32.692Z Has data issue: false hasContentIssue false

Photon kinetic theory in plasmas and in optics

Published online by Cambridge University Press:  01 March 2004

J.T. MENDONÇA
Affiliation:
GoLP, Instituto Superior Técnico, Lisboa, Portugal

Abstract

Recent advances of the photon kinetic theory are illustrated here, with examples taken from plasma physics (forward Raman scattering), and from nonlinear optics (self-phase modulation). This theory can provide a unified view of nonlinear optical phenomena involving photon beams with an arbitrary spectrum.

Type
International Conference on the Frontiers of Plasma Physics and Technology
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfano, R.R. (ed.) (1989). The Supercontinuum Laser Source, New York: Springer.
Armstrong, J.A., Bloembergen, N., Ducuing, J. & Pershan, P.S. (1962). Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 19181939.CrossRefGoogle Scholar
Bingham, R., Mendonça, J.T. & Dawson, J.M. (1997). Photon Landau damping. Phys Rev. Lett. 78, 247249.CrossRefGoogle Scholar
Hall, B., Lisak, M., Anderson, D., Fedele, R. & Semenov, V.E. (2002). Statistical theory for incoherent light propagation in nonlinear media. Phy. Rev. E65, 0350602(R).
Hillary, M., O'Connel, R.F., Scully, M.O. & Wigner, E.P. (1984). Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121167.CrossRefGoogle Scholar
Kadomtsev, B.B. (1965). Plasma Turbulence, New York: Academic Press.
Mendonça, J.T. (2001). Theory of Photon Acceleration. Bristol UK: Institute of Physics.CrossRef
Mendonça, J.T. & Bingham, R. (2002). Plasmon beam instability and plasmon Landau damping of ion acoustic waves. Phys. Plasmas 9, 26042608.CrossRefGoogle Scholar
Mendonça, J.T. & Tsintsadze, N.L. (2000). Analog of the Wigner-Moyal equation for the electromagnetic field. Phys. Rev. E 62, 42764282.CrossRefGoogle Scholar
Sagdeev, R.Z. & Galeev, A.A. (1969). Nonlinear Plasma Theory. New York: Benjamin.
Silva, L.O. & Mendonça, J.T. (1998). Kinetic theory of photon acceleration: Time-dependent spectral evolution of ultra-short laser pulses. Phys Rev. E 57, 34233431.Google Scholar
Silva, L.O. & Mendonça, J.T. (2001). Photon kinetic theory of self-phase modulation. Opt. Commun. 196, 285291.CrossRefGoogle Scholar
Silvo, L.O., Mori, W.B., Bingham, R., Dawson, J.M., Autonsen, T.M. & Mora, P. (2000). Photon kinetics for laser-plasma interaction. IEEE Trans. Plasma Sci. 28, 12021208.CrossRefGoogle Scholar
Tsintsadze, N.L. & Mendonça, J.T. (1998). Kinetic theory of photons in a plasma. Phys. Plasmas 5, 36093614.CrossRefGoogle Scholar
Wigner, E.P. (1932). On the quantum corrections for thermodynamic equilibrium. Phys. Rev. 40, 749759.CrossRefGoogle Scholar