Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T21:19:57.587Z Has data issue: false hasContentIssue false

Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels

Published online by Cambridge University Press:  01 June 2004

C. DEUTSCH
Affiliation:
Laboratoire de Physique des Gaz et Plasmas, (CNRS-UMR), Université Paris XI, ORSAY Cedex, France

Abstract

This paper emphasizes the energy dissipation through collective electromagnetic modes (mostly transverse to the incoming beam) of ultraintense relativistic electrons and nonrelativistic protons interacting with a supercompressed core of deuterium + tritium (DT) thermonuclear fuel. This pattern of beam–plasma interaction documents the fast ignition scenario for inertial confinement fusion.

The electronmagnetic Weibel instability is considered analytically in a linear approximation. Relevant growth rates parameters then highlight density ratios between target and particle beams, as well as transverse temperatures. Significant refinements include mode–mode couplings and collisions with target electrons. The former qualify the so-called quasi-linear (weakly turbulent) approach. Usually, it produces significantly lower growth rates than the linear ones. Collisions enhance them slightly for kcp < 1, and dampen them strongly for kcp ≥ 1. Those results simplify rather drastically for the laser-produced and nonrelativistic proton beams. In this case, those growth rates remain always negative through a wide range of beam–target parameters.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deutsch, C. & Fromy, P. (1999). Correlated stopping of relativistic electrons in superdense plasmas. Phys. Plasmas 6, 35973606.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara (1996). Interaction physics of the Fast ignitor concept. Phys. Rev. Lett. 77, 24832486. Erratum (2000). 85, 1140.CrossRefGoogle Scholar
Fermi, E. (1940). The ionization loss in gases and in condensed materials. Phys. Rev. 57, 485493.CrossRefGoogle Scholar
Hain, S. & Mulser, P. (2001). Fast ignition without hole boring. Phys. Rev. Lett. 86, 10151018.CrossRefGoogle Scholar
Honda, M. (2000). On the maximum current for a self-focusing relativistic electron beam. Phys. Plasmas 7, 16051606.Google Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnik, K., Miyakoshi, T., Miyanada, N., Normatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as step towards laser fusion ignition. Nature 412, 798802.CrossRefGoogle Scholar
Kono, M. & Ichikawa, Y.H. (1973). Renormalization of the wave-particle interaction in weakly turbulent plasmas. Prog. Theor. Phys. 49, 754763.CrossRefGoogle Scholar
Lefebvre, E. & Bonnaud, G. (1995). Transparency/opacity of a solid target illuminated by an untrahigh-intensity laser pulse. Phys. Rev. Lett. 74, 20022005.CrossRefGoogle Scholar
Okada, T. & Kiu, K. (1980). Electromagnetic instability and stopping power of plasma for relativistic electron beams. J. Plasma Phys. 23, 423432.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Browin, G., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilds, S.G., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Petty, M. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinksy, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, M.E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar