Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:23:25.905Z Has data issue: false hasContentIssue false

Peierls’ dielectric response for clarification of interacting electron with laser beams

Published online by Cambridge University Press:  03 May 2013

Heinrich Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
*
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: [email protected]

Abstract

The formulation of the momentum of electromagnetic radiation or photons in media is a historical question. After Peierls discussed all these options, a crucial new value for the dominating dispersion factor σ was derived for non-ionized media with the consequence that an opto-acoustic coupling exists. After the experimental confirmation of the Kapitza-Dirac effect the generalization of the effect for quantum modulation of electron beams by crossing laser beams is ascertained. The evaluation of repeated experiments of this quantum modulation is very precisely confirming by measurements that the Peierls factor σ = 1/5 is correct.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrick, D. & Langhans, L. (1978). Measurement of the free-free cross section of e-Ar scattering J. Phys. B 11, 23552359.CrossRefGoogle Scholar
Bae, J., Okuyama, S., Aiyuki, T. & Mizuno, K. (1993). Electron energy modulation with laser light using a small gap circuit. A theoretical consideration. Nucl. Instr. Meth. A 331, 509512.CrossRefGoogle Scholar
Bauke, H., Klaiber, M., Yakaboylu, E., Hatsagortsyan, K.Z., Arens, S., Muller, C. & Keitel, C.H. (2013). Computational relativistic quantum dynamics and its application to relativistic tunneling and kapitza-dirac scattering. SPIE proceeding 8780.CrossRefGoogle Scholar
Burt, N.G. & Peierls, R. (1973). The momentum of a light wave in a refracting medium. Proc. Roy. Soc. (London) A333, 149156.Google Scholar
Carter, J.L. & Hora, H. (1971). Total reflection of matter waves: The Goos-Haenchen effect for grazing incidence. J. Opt. Soc. Amer. 61, 16401645.CrossRefGoogle Scholar
Dirac, P.A.M. (1925). The fundamental equations of quantum mechanics. Proc. Roy. Soc. London A 109, 642653.Google Scholar
Dirac, P.A.M. (1978). Directions in Physics (Hora, H. & Shepanski, J.R., Eds.). New York: John Wiley.Google Scholar
Evans, R. (1988). The light that never was. Nat. 333, 208209.Google Scholar
Freimund, D.L., Aflatooni, K. & Batelaan, H. (2001). Observation of the Kapitza-Dirac effect. Nat. 413, 142143.CrossRefGoogle ScholarPubMed
Ginzburg, V.L. (1973). The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics. Sov. Phys. Usp. 16, 434.CrossRefGoogle Scholar
Gordon, J. (1973). Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 1421.CrossRefGoogle Scholar
Handel, P.H. (1975). 1/f noise – an infrared phenomenon. Phys. Rev. Lett. 34, 14921494.CrossRefGoogle Scholar
Heisenberg, W. (1925). Über quantenthoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. f. Phys. 33, 879893.CrossRefGoogle Scholar
Hora, H. (1960). On the side shift at total reflection of matter waves. Opt. 17, 409415.Google Scholar
Hora, H. (1970). Coherence of matter waves in the effect of electron waves modulated by laser beams in solids. Phys. Status Solidi B 42, 131136.CrossRefGoogle Scholar
Hora, H. (1974). Momentum of photons and the nonlinear force of laser-plasma interaction. Phys. Fluids 17, 10421043.CrossRefGoogle Scholar
Hora, H. (1977). Correction of the long beating length in quantum modulated electron beams. Phys. Status Solidi B 80, 143147.CrossRefGoogle Scholar
Hora, H. (1988). Particle acceleration by superposition of frequency-controlled laser pulses. Nature 333, 337338.CrossRefGoogle Scholar
Hora, H. (2000). Laser Plasma Physics: Interaction Forces and the Nonlinearity Principle. Bellingham, WA: The International Society for Optical Engineering SPIE.Google Scholar
Hora, H. (2012). Fundamental difference of picosecond to nanosecond laser interaction with plasmas: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils. Laser Part. Beams 30, 325328.CrossRefGoogle Scholar
Hora, H. & Handel, P.H. (1987). New experiments and theoretical development of the quantum modulation of electrons. In Advances in Electronics and Electron Physics (Schwarz-Hora effect) (Hawkes, P.W., Ed.). New York: Academic Press, Vol. 69, 55113.Google Scholar
Hora, H., Hoels, M., Scheid, W., Wang, J.X., Ho, Y.K., Osmann, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.CrossRefGoogle Scholar
Jammer, M. (1961). Concepts of Mass. Cambridge, MA: Harvard University Press.Google Scholar
Kapitza, P.L. & Dirac, P.A.M. (1933). The reflection of electrons from standing light waves. Proc. Camb. Phil. Soc. 29, 297300.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1960). Electrodynamics of Continuous Media. London: Pergamon.Google Scholar
Novak, M.M. (1983). Electromagnetic waves in a high density field. Laser Part. Beams 1, 321330.CrossRefGoogle Scholar
Peierls, R. (1976). The momentum of light in a refracting medium. Proc. Roy. Soc. (London) A 347, 475491.Google Scholar
Salat, A. (1970). Electron diffraction patterns from laser illuminated crystals. J. Phys. C 3, 2509.CrossRefGoogle Scholar
Schwarz, H. (1971). Trans. New York Acad. Sci. 33, 130.Google Scholar
Schwarz, H. & Hora, H. (1969). Modulation of an electron wave by a light wave. Appl. Phys. Letters 15, 349351.CrossRefGoogle Scholar
Scott, J.F., O'sullivan, R.A. & Reiche, M.R. (1996). Self-assembly of hexatic optical patterns in ferroelectric crystals: Rediscovery of the Schwarz-Hora effect? Phys. A 223, 655662.CrossRefGoogle Scholar
Steinke, S., Hening, A., Schnürer, M., Sokollik, T., Nickles, P. V., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-Ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Van Zandt, L.L. & Meyer, J.W. (1970). Theory of the Schwarz-Hora effect. J. Appl. Physics 41, 44704475.CrossRefGoogle Scholar
Varshalovich, D.A. & Dyakonov, M.A. (1971). To the theory of the Schwarz-Hora effect. Sov. Phys. JETP 33, 5157.Google Scholar
Weingartshofer, A., Holmes, J.K., Sagabah, J. & Jin, S.L. (1985). Electron scattering in intense laser fields. J. Phys. B 16, 18051817.CrossRefGoogle Scholar