Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T08:37:15.707Z Has data issue: false hasContentIssue false

Parametric potential for modelling of highly charged heavy ions

Published online by Cambridge University Press:  09 March 2009

S. Mabong
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, U.R.A 073 C.N.R.S.–Université de Paris XI, Bât. 212, 91405 Orsay Cedex, France
G. Maynard
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, U.R.A 073 C.N.R.S.–Université de Paris XI, Bât. 212, 91405 Orsay Cedex, France
K. Katsonis
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, U.R.A 073 C.N.R.S.–Université de Paris XI, Bât. 212, 91405 Orsay Cedex, France

Abstract

Parametric electron-ion potential for fast estimation of atomic data required for “on-line” calculations in inertial confinement fusion (ICF) driven by heavy ions is presented. Comparisons of our results (outer- and inner-shell ionization energies, oscillator strengths, and logarithmic mean excitation energies) with experimental and self-consistent-field (SCF) calculation values are made. Using the wave functions generated by the previously mentioned potential, generalized oscillator strengths and integrated inelastic collision cross sections are computed within the frame of Born approximation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFEREMCES

Callahan, D. 1995 In Intense Ion Beams and Target Physics Workshop (Centre de Physique des Houches, France).Google Scholar
Clark, R.E.H. & Merts, A.L. 1987 J. Quant. Spectrosc. Radiativ. Transfer 38, 287.Google Scholar
Cowan, R.D. 1981 The Theory of Atomic Structure and Spectra (University of California Press, Berkeley).CrossRefGoogle Scholar
Dehmer, J.L. et al. 1975 Phys. Rev A 12, 102.Google Scholar
Fermi, E. 1927 Rend. Acad. Lincei 6, 602.Google Scholar
Ganas, P.S. 1987 J. Appl. Phys. 63.Google Scholar
Green, A.E.S. 1958 Rev. Mod. Phys. 30, 580.CrossRefGoogle Scholar
Green, A.E.S. et al. 1969 Phys. Rev. 184, 1.CrossRefGoogle Scholar
Herman, F. & Skillman, S. 1963. Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, New Jersey).Google Scholar
Marchand, R. & Cailles, S. 1990 J. Quant. Spectrosc. Radiativ. Transfer 43, 149.CrossRefGoogle Scholar
Maynard, G. 1987 Thesis, University of Paris XI.Google Scholar
Pankratov, P. & Meyer-Ter-Vehn, J. 1992 Phys. Rev. A 46, 5497.Google Scholar
D'Yachkov, L.D. & Pankratov, P. 1995 J. Phys. B: At. Mol. Opt. Phys. 28, 1173.CrossRefGoogle Scholar
Rogers, F.J. 1981 Phys. Rev. A 23, 1008.CrossRefGoogle Scholar
Rogers, F.J. et al. 1988 Phys. Rev. A 38, 5007.CrossRefGoogle Scholar
Rosendorff, S. & Schlaile, H.G. 1993 Phys. Rev A 48, 2798.Google Scholar
Salvat, F. & Mayol, R. 1991 Comput. Phys. Commun. 62, 277.CrossRefGoogle Scholar
Sobelman, I.I. 1991 Atomic Spectra and Radiative Transitions (Springer Verlag, Berlin).Google Scholar
Thomas, L.H. 1927 Proc. Cambridge Phil. Soc. 23, 542.CrossRefGoogle Scholar
Vay, J.L. & Deutsch, C. 1995 In International Symposium on Heavy Ions Fusion. (Proceedings to appear in Nuclear Engineering and Design).Google Scholar
Yabe, T. & Goel, B. 1986 Kernforschungszentrum, Karlsruhe report No. KFK-4176, Karlsruhe (unpublished).Google Scholar
Zhao, Q. & Parr, R.G. 1992 Phys. Rev. A 46, R5320.Google Scholar