Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T20:54:05.109Z Has data issue: false hasContentIssue false

Optical breakdown threshold in fused silica with femtosecond laser pulses

Published online by Cambridge University Press:  24 July 2013

A. Bendib*
Affiliation:
Quantum Electronic Laboratory, Faculty of Physics, USTHB, Algiers, Algeria
K. Bendib-Kalache
Affiliation:
Quantum Electronic Laboratory, Faculty of Physics, USTHB, Algiers, Algeria
C. Deutsch
Affiliation:
Laboratoire de physique des gaz et des plasmas, UMR 8578, Université Paris-Sud 11, Orsay, France
*
Address correspondence and reprint requests to: A. Bendib, Quantum Electronic Laboratory, Faculty of Physics, USTHB, El Alia BP 32, Bab Ezzouar 16111, Algiers, Algeria. E-mail address: [email protected]

Abstract

A theoretical model for electrons in the conduction band intend to investigate the optical breakdown threshold in femtosecond laser pulse-fused silica interaction is presented. The model is derived from a rate equation that includes the avalanche and multi-photon ionization processes of Thornber and Keldysh, respectively, and also the three-body and exciton recombination mechanisms. In addition, the time evolution of electron mean energy is also considered through the energy balance equation. The mean energy acts as a trigger for the avalanche mechanism. The evolution of electron density profiles is calculated and discussed with respect to the ionization and recombination mechanisms. The results for the fluence threshold as a function of the pulse duration fall in good agreement with the experimental data reported in the literature.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allenspacher, P., Hüttner, B. & Riede, W. (2003). Ultrashort pulse damage of Si and Ge semiconductors. SPIE 4932, 358365.Google Scholar
Chen, J.K., Tzou, D.Y. & Beraun, J.E. (2005). Numerical investigation of ultrashort laser damage in semiconductors. Int. J. Heat & Mass Transfer 48, 501509.CrossRefGoogle Scholar
Du, D., Liu, X. & Mourou, G. (1996). Reduction of multi-photon ionization in dielectrics due to collisions. Appl. Phys. B: Lasers & Optics 63, 617621.CrossRefGoogle Scholar
Eidmann, K., Meyer-Ter-Vehn, J., Schlegel, T. & Hüller, S. (2000). Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter. Phys. Rev. E 62, 12021214.CrossRefGoogle ScholarPubMed
Gamaly, E.G., Rode, A.V., Luther-Davies, B. & Tikhonchuk, V.T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949.CrossRefGoogle Scholar
Huba, J.D. (2000). NRL plasma Formulary. Washington, DC: Naval Research Laboratory.Google Scholar
Keldysh, L.V. (1965). Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 13071314.Google Scholar
Kirkwood, S.E., Tsui, Y.Y., Fedosejevs, R., Brantov, A.V. & Bychenkov, V.Yu. (2009). Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets. Phys. Rev. B 79, 144120144126.CrossRefGoogle Scholar
Lenzner, M., Krüger, J., Sartania, S., Cheng, Z., Spielmann, Ch., Mourou, G., Kautek, W. & Krausz, F. (1998). Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076–79.CrossRefGoogle Scholar
Li, M., Menon, S., Nibarger, J.P. & Gibson, G.N. (1999). Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–97.CrossRefGoogle Scholar
Peñano, J.R., Sprangle, P., Hafizi, B., Manheimer, W. & Zigler, A. (2005). Transmission of intense femtosecond laser pulses into dielectrics. Phys. Rev. E 72, 036412–18.CrossRefGoogle ScholarPubMed
Perez, D., Beland, L.K., Derying, D., Lewis, L.J. & Meunier, M. (2008). Numerical study of the thermal ablation of wet solids by ultrashort laser pulses. Phys. Rev. B 77, 014108.CrossRefGoogle Scholar
Perez, D. & Lewis, J. (2002). Ablation of solids under femtosecond laser pulses. Phys. Rev. Lett. 89, 255504.CrossRefGoogle ScholarPubMed
Petite, G., Guizard, S., Martin, P. & Quéré, F. (1999). Comment on “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics.” Phys. Rev. Lett. 83, 5182–5182.CrossRefGoogle Scholar
Rajeev, P.P., Gertsvolf, M., Corkum, P.B. & Rayner, D.M. (2009). Field dependent avalanche ionization rates in dielectrics. Phys. Rev. Lett. 102, 083001.CrossRefGoogle ScholarPubMed
Rethfeld, B. (2004). Unified model for free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401–04.CrossRefGoogle ScholarPubMed
Rethfeld, B., Brenk, O., Medvedev, N., Krutsch, H. & Hoffmann, D.H.H. (2010). Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation. Appl. Phys. A 101, 1925.CrossRefGoogle Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar
Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I.V., Bulgakova, N.M. & Campbell, E.E.B. (2002). Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys. Rev. Lett. 88, 097603.CrossRefGoogle ScholarPubMed
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.CrossRefGoogle Scholar
Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W. & Perry, M.D. (1996). Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53, 1749–61.CrossRefGoogle ScholarPubMed
Stuart, B.C., Feit, M.D., Rubenchik, A.M., Shore, B.W. & Perry, M.D. (1995). Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 2248–51.CrossRefGoogle ScholarPubMed
Thornber, K.K. (1981). Applications of scaling to problems in high-field electronic transport. J. Appl. Phys. 52, 279290.CrossRefGoogle Scholar
Tien, A.C., Backus, S., Kapteyn, H., Murnane, M. & Mourou, G. (1999). Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82, 3883–6.CrossRefGoogle Scholar