Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T14:53:40.706Z Has data issue: false hasContentIssue false

On the theory of spatial photon localization: Fundamentals and the role of near-field plasma screening

Published online by Cambridge University Press:  06 March 2006

OLE KELLER
Affiliation:
Institute of Physics and Nanotechnology, Aalborg University, Aalborg Øst, Denmark

Abstract

Starting from the Riemann-Silberstein formulation of classical electrodynamics the Schrödinger equation for the photon energy wave function is discussed. Hereafter, a propagator description of the space-time emission of a polychromatic photon from an atom is presented, paying particular attention to the near-field electrodynamics. When the atom is embedded in a solid-state plasma the photon emission process can be dramatically modified. Limiting the analyses to solid-state plasmas exhibiting translational and rotational symmetry, the near-field atom-photon-plasma interaction is studied paying particular attention to the plasmariton and plasmon excitation processes. It is shown that the transverse and longitudinal parts of the plasma-screened field propagator link in a direct manner to the free-photon propagator and the longitudinal near-field photon propagator. The necessity of keeping both the transverse and longitudinal parts of the plasma screening in a rigorous description of near-field electrodynamics is demonstrated.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agranovich, V.M. & Ginzburg, V.L. (1984). Crystal Optics with Spatial Dispersion, and Excitons. Berlin: Springer.
Agranovich, V.M. & Mills, D.L. (1982). Surface Polaritons. Electromagnetic Waves at Surfaces and Interfaces (Agranovich, V.M. & Maradudin, A.A, Eds.). Amsterdam: North-Holland.
Andersen, T., Keller, O., Hübner, W. & Johansson, B. (2004). Spin and diamagnetism in linear and nonlinear optics. Phys. Rev. A 70, 126.Google Scholar
Ashcroft, N.W. & Mermin, N.D. (1976). Solid State Physics. London: Holt, Rinehart and Winston.
Bialynicki-Birula, I. (1994). On the wave function of the photon. Acta. Phys. Polon A 86, 97111.Google Scholar
Bialynicki-Birula, I. (1996). Photon wave function. In Progress in Optics (Wolf, E., Ed.), Vol. XXXVI, pp. 245294. Amsterdam: Elsevier.
Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. (1989). Photons and Atoms. Introduction to Quantum Electrodynamics. New York: Wiley.
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Dresden, M. (1987). H.A. Kramers. Between Tradition and Revolution. Heidelberg: Springer.
Feibelman, P.J. (1982). Surface electromagnetic fields. Progr. Surf. Sci. 12, 287407.Google Scholar
Forstmann, F. & Gerhardts, R.R. (1986). Metal Optics near the Plasma Frequency. Berlin: Springer.
Garcia-Moliner, F. & Flores, F. (1979). Introduction to the Theory of Solid Surfaces. London: Cambridge University Press.
Gericke, D.O., Murillo, M.S. & Schlanges, M. (2002). Nonideality effects on temperature relaxation. Laser Part. Beams 22, 543545.Google Scholar
Girard, C. & Dereux, A. (1996). Near-field optics theories. Rep. Progr. Phys. 59, 657699.Google Scholar
Good, R.H., Jr. (1957). Particle aspects of the electromagnetic field equations. Phys. Rev. 105, 19141919.Google Scholar
Greschik, F. & Kull, H.-J. (2004). Two-dimensional PIC simulation of atomic clusters in intense laser fields. Laser Part. Beams 22, 137145.Google Scholar
Jones, W. & March, N.H. (1973). Theoretical Solid State Physics. Vol. 1 and 2. London: Wiley.
Keldysh, L.V., Kirchnitz, D.A. & Maradudin, A.A. (1989). The Dielectric Function of Condensed Systems (Agranovich, V.M. & Maradudin, A.A., Eds.). Amsterdam: North-Holland.
Keller, O. (1986). Screened electromagnetic propagators in nonlocal metal optics. Phys. Rev. B 34, 38833899.Google Scholar
Keller, O. (1988). Tensor-product structure of a new electromagnetic propagator for nonlocal surface optics of metals. Phys. Rev. B 37, 1058810607.Google Scholar
Keller, O. (1991). On the Theory of Nonlinear Nonlocal Optics in Solid-State Plasmas. Monography. Aalborg: University of Aalborg.
Keller, O. (1996). Local fields in the electrodynamics of mesoscopic media. Phys. Rep. 268, 85262.Google Scholar
Keller, O. (1998). Propagator picture of the spatial confinement of quantized light emitted from an atom. Phys. Rev. A 58, 34073425.Google Scholar
Keller, O. (1999a). Relation between spatial confinement of light and optical tunneling. Phys. Rev. A 60, 16521671.Google Scholar
Keller, O. (1999b). Attached and radiated electromagnetic fields of an electric point dipole. J. Opt. Soc. Am. B 16, 835847.Google Scholar
Keller, O. (2000). Space-time description of photon emission from an atom. Phys. Rev. A 62, 122.Google Scholar
Keller, O. (2001). On the quantum physical relation between photon tunneling and near-field optics. J. Microscopy 202, 261272.Google Scholar
Keller, O. (2005). On the theory of spatial photon localization. Phys. Rep. 411, 1232.Google Scholar
Kliewer, K.L. (1980). Electromagnetic effects at metal surfaces: a nonlocal view. Surf. Sci. 101, 5783.Google Scholar
Kramers, H.A. (1938). Theorien des Aufbaues der Materie II. Leipzig: Akademische Verlagsgesellschaft.
Kramers, H.A. (1964). Quantum Mechanics. New York: Dover.
Landau, L. & Peierls, R. (1930). Quantenelektrodynamik im Konfigurationsraum. Z. Phys. 62, 188200.Google Scholar
Lindhard, J. (1954). On the properies of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 157.Google Scholar
Mandel, L. & Wolf, E. (1995). Optical Coherence and Quantum Optics. Cambridge: Cambridge University.
Morse, P.M. & Feshbach, H. (1953). Methods of Theoretical Physics, Part I and II. New York: McGraw-Hill.
Moses, H.E. (1959). Solution of Maxwell's equations in terms of spinor notation: The direct and inverse problem. Phys. Rev. 113, 16701679.Google Scholar
Moses, H.E. (1973). Photon wave functions and the exact electromagnetic matrix elements for hydrogenic atoms. Phys. Rev. A 8, 17101721.Google Scholar
Oppenheimer, J.R. (1931). Note on light quanta and the electromagnetic field. Phys. Rev. 38, 725746.Google Scholar
Pike, E.R. & Sarkar, S. (1995). The Quantum Theory of Radiation. Oxford: Oxford University Press.
Shorki, B., Niknam, A.R. & Krainov, V. (2004a). Cluster structure effects on the interaction of an ultrashort intense laser field with large clusters. Laser Part. Beams 22, 1318.Google Scholar
Shorki, B., Niknam, A.R. & Smirnov, M. (2004b). Ionization processes in the ultrashort intense laser field interaction with large clusters. Laser Part. Beams 22, 4550.Google Scholar
Silberstein, L. (1907a). Elektromagnetische grundgleichungen in bivectorieller behandling. Ann. Phys. 22, 579586.Google Scholar
Silberstein, L. (1907b). Nachtrag zur abhandling über elektromagnetische grundgleichungen in bivectorieller behandling. Ann. Phys. 24, 783784.Google Scholar
Sipe, J.E. (1995). Photon wave functions. Phys. Rev. A 52, 18751883.Google Scholar
Tai, C-T. (1993). Dyadic Green Functions in Electromagnetic Theory. New York: IEEE Press.
Van Bladel, J. (1991). Singular Electromagnetic Fields and Sources. New York: IEEE Press.
Van Kranendonk, J. & Sipe, J.E. (1977). Foundations of the macroscopic electromagnetic theory of dielectric media. In Progress in Optics (Wolf, E., Ed.). Vol. XV, pp. 245350.
Weber, H. (1901). Die Partiellen Differential-Gleichungen der Mathematischen Physik nach Riemann's Vorlesungen. Braunschweig: F. Vieweg und Sohn.
Yaghjian, A.D. (1980). Electric dyadic Green's functions in the source region. Proc. IEEE 68, 248263.Google Scholar