Published online by Cambridge University Press: 11 July 2011
We present a numerical study of the acceleration of ions in the interaction of a high intensity circularly polarized laser beam normally incident on an overdense plasma target, and the subsequent formation of neutral plasma ejected toward the rear side of the target. We compare the results obtained from two different numerical codes. We use an Eulerian Vlasov code for the numerical solution of the one-dimensional relativistic Vlasov-Maxwell set of equations, for both electrons and ions, and a particle-in-cell code applied to the same problem. We consider the case when the laser free space wavelength λ0 is greater than the scale length of the jump in the plasma density at the target plasma edge Ledge (λ0 ≫ Ledge), and the ratio of the plasma density to the critical density is such that n/ncr ≫ 1. The ponderomotive pressure due to the incident high-intensity laser radiation pushes the electrons at the target plasma surface, producing a sharp density gradient at the plasma surface, which gives rise to a charge separation. The resulting electric field accelerates the ions that reach a free streaming expansion phase, where they are neutralized by the electrons. A neutral plasma jet is thus ejected toward the rear side of the target. Two cases are studied: In the first case, the laser intensity rises to a maximum and then remains constant, and in the second case, the laser intensity is a Gaussian-shaped pulse. The results show substantial differences in the phase-space structure of the ions and the electrons between these two cases. There is good agreement between the quantitative macroscopic results obtained by the two codes, and good qualitative agreement between the results showing the kinetic details of the phase-space structures. The low noise level of the Eulerian Vlasov code allows a more detailed representation of the phase-space structures associated with this system, especially in the low density regions of the phase-space where ions are accelerated.