Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T05:13:15.219Z Has data issue: false hasContentIssue false

Numerical modeling of quantum beam generation from ultra-intense laser-matter interactions

Published online by Cambridge University Press:  17 March 2015

Tatsufumi Nakamura*
Affiliation:
Fukuoka Institute of Technology, Fukuoka, Japan
Takehito Hayakawa
Affiliation:
Japan Atomic Energy Agency, Tokai, Japan
*
Address correspondence and reprint requests to: Tatsufumi Nakamura, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan. E-mail: [email protected]

Abstract

When intense laser beams interact with solid targets, high-energy photons are effectively generated via radiation reaction effect. These photons receive a large portion of the incident laser energy, and the energy transport by photons through the target is crucial for the understanding of the laser–matter interactions. In order to understand the energy transport, we newly developed a Particle-in-Cell code which includes the photon–matter interactions by introducing photon macro-particles. Test simulations are performed and compared with simulations using a particle transport code, which shows a good agreement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bethe, H. & Heitler, W. (1934). On the stopping of fast particles and on the creation of positive electrons. Proc. R. Soc. A 146, 83112.Google Scholar
Birdsall, C. & Langdon, A.B. (1985). Plasma Physics via Computer Simulation. New York: McGraw-Hill.Google Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, MH., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulse with solid targets. Phys. Plasmas 7, 20762082.CrossRefGoogle Scholar
Klein, O. & Nishina, Y. (1929). Uber die streung von strahlung durch freie elektronen nach der neuen relativitischen quantendynamik von Dirac Z. Phys. 52, 853868.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. (1975). The Classical Theory of Fields. Oxford: Pergamon.Google Scholar
Murnane, M.M., Kapteyn, H.C., Rosen, M.D. & Falcone, R.W. (1991). Ultrafast x-ray pulses from laser-produced plasmas. Science 251, 531536.CrossRefGoogle ScholarPubMed
Nakamura, T., Koga, J.K., Esikepov, T.Z., Kando, M., Korn, G. & Bulanov, S.V. (2012). High-power gamma-ray flash generation in ultraintense plaser-plasma interactions. Phys. Rev. Lett. 108, 195001.CrossRefGoogle ScholarPubMed
Nakamura, T., Tampo, M., Kodama, R., Bulanov, S.V. & Kando, M. (2010). Interaction of high contrast laser pulse with foam-attached target. Phys. Plasmas 17, 113107.CrossRefGoogle Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boreing in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002.CrossRefGoogle Scholar
Remington, B.A., Arnett, D., Drake, R.P. & Takabe, H. (1999). Modeling astrophysical phenomena in the laboratory with intense lasers. Science 284, 14881493.CrossRefGoogle Scholar
Ridgers, C.P., Brady, C.S., Duclous, R., Kirk, J.G., Bennett, K., Arber, T.D., Robinson, A.P.L. & Bell, A.R. (2012). Dense electron–positron plasmas and ultraintense gamma rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006.CrossRefGoogle ScholarPubMed
Sato, T., Niita, K., Matsuda, N., Hashimnoto, S., Iwamoto, Y., Noda, S., Ogawa, T., Iwase, H., Nakashima, H., Fukuhori, T., Okumura, K., Kai, T., Chiba, S., Furuta, T. & Sihver, L. (2013). Particle and heavy ion transport code system PHITS, version 2.52. J. Nucl. Sci. Technol. 50, 913923.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Tamburini, M., Pegoraro, F., Piazza, A.D., Keitel, C.H. & Macchi, A. (2010). Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12, 123005.CrossRefGoogle Scholar
Weinberg, S. (1995). The Quantum Theory of Fields 1. Cambridge: Cambridge University Press.Google Scholar
Zhidkov, A., Koga, J., Sasaki, A. & Uesaka, M. (2002). Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma. Phys. Rev. Lett. 88, 185002.CrossRefGoogle ScholarPubMed