Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T02:51:31.124Z Has data issue: false hasContentIssue false

Numerical investigation for shape controlling of ultrathin electron layer

Published online by Cambridge University Press:  17 July 2012

F. Tan
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
B. Wu
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
B. Zhu
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
D. Han
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Z.-Q. Zhao
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
W. Hong
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
L.-F. Cao
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
Y.-Q. Gu*
Affiliation:
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China
*
Address correspondence and reprint requests to: Y.-Q. Gu, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, China. E-mail: [email protected]

Abstract

To control the shape of the ultra-thin electron layer produced by directly interaction of ultrahigh contrast laser with ultra-thin foil target, we investigated the spacial distribution and temporal evolution of electron layers produced from single and double foil targets through two-dimensional particle-in-cell simulations. Results show that electron layers produced from double foil targets can fly with unperturbed velocity for a much longer time than in the single foil case, which can be explained by the integrated contribution of charge separation field from both the two foils. Further studies show that through adjusting the foil expansion, electron layers with different shapes can be obtained. Detailed studies on the forming process of layers show that electron momentum distribution evolves rapidly along with the pump laser and then the vanishing of electron transverse momentum induced by the reflected laser results in the forming of layer shape. So different foil expansion corresponds to different moments that reflected laser interact with electron layer, when the electron transverse momentum distribution is different. After the reflected laser interact with electron layer, the resultant longitude momentum distribution will finally lead to various electron layer shapes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attwood, D. (1999). Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bulanov, S.V., Esirkepov, T. & Tajima, T. (2003). Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001.CrossRefGoogle ScholarPubMed
Chao, A.W. & Tigner, M. (2006). Handbook of Accelerator Physics and Engineering. Singapore: World Scientific.Google Scholar
Chouffani, K., Wells, D., Harmon, F., Jones, J. & Lancaster, G. (2002). Laser-Compton scattering from a 20 MeV electron beam. Nucl. Instrum. Methods Phys. Res. A, 495, 95106.CrossRefGoogle Scholar
Gibson, D.J., Anderson, S.G., Barty, C.P.J., Betts, S.M., Booth, R., Brown, W.J., Crane, J.K., Cross, R.R., Fittinghoff, D.N., Hartemann, F.V., Kuba, J., Sage, G.P.L., Slaughter, D.R., Tremaine, A.M., Wootton, A.J., Hartouni, E.P., Springer, P.T. & Rosenzweig, J.B. (2004). PLEIADES: A picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies. Phys. Plasmas 11, 28572864.CrossRefGoogle Scholar
Hörlein, R., Steinke, S., Henig, A., Rykovanov, S.G., Schnürer, M., Sokollik, T., Kiefer, D., Jung, D., Yan, X.Q., Tajima, T., Schreiber, J., Hegelich, M., Nickles, P.V., Zepf, M., Tsakiris, G.D., Sandner, W. & Habs, D. (2011). Dynamics of nanometer-scale foil targets irradiated with relativistically intense laser pulses. Laser Part. Beams 29, 383388.CrossRefGoogle Scholar
Joshi, C.J. & Corkum, P.B. (1995). Interaction of ultra-intense laser Light with matter. Phys. Today 48, 36.CrossRefGoogle Scholar
Kiefer, D., Henig, A., Jung, D., Gautier, D.C., Flippo, K.A., Gaillard, S.A., Letzring, S., Johnson, R.P., Shah, R.C., Shimada, T., Fernández, J.C., Liechtenstein, V.Kh., Schreiber, J., Hegelich, B.M. & Habs, D. (2009). First observation Of quasi-monoenergetic electron bunches driven out of ultra-thin Diamond-like carbon (DLC) foils. Eur. Phys. J. D 55, 427432.CrossRefGoogle Scholar
Kulagin, V.V., Cherepenin, V.A., Hur, M.S. & Suk, H. (2007). Theoretical investigation of controlled generation of a dense attosecond relativistic electron bunch from the Interaction of an ultrashort laser pulse with a nanofilm. Phys. Rev. Lett. 99, 124801.CrossRefGoogle ScholarPubMed
Leemans, W.P., Schoenlein, R.W., Volfbeyn, P., Chin, A.H., Glover, T.E., Balling, P., Zolotorev, M., Kim, K.J., Chattopadhyay, S. & Shank, C.V. (1996). X-ray based subpicosecond electron bunch characterization using 90° Thomson scattering. Phys. Rev. Lett. 77, 41824185.CrossRefGoogle ScholarPubMed
Liechtenstein, V.K., Ivkova, T.M., Olshanski, E.D., Feigenbaum, I., Dinardo, R. & Döbeli, M. (1997). Preparation and evaluation of thin diamond-like carbon foils For heavy-ion tandem accelerators and time-of-flight spectrometers. Nucl. Instrum. Meth. A 397, 140145.CrossRefGoogle Scholar
Meyer-ter-Vehn, J. & Wu, H.-C. (2009). Coherent Thomson backscattering from laser-driven relativistic ultra-thin Electron layers. Eur. Phys. J. D 55, 433441.CrossRefGoogle Scholar
Pae, K.H., Choi, I.W. & Lee, J. (2011). Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime. Laser Part. Beams 29, 1116.CrossRefGoogle Scholar
Pogorelsky, I.V., Ben-Zvi, I., Hirose, T., Kashiwagi, S., Yakimenko, V., Kusche, K., Siddons, P., Skaritka, J., Kumita, T., Tsunemi, A., Omori, T., Urakawa, J., Washio, M., Yokoya, K., Okugi, T., Liu, Y., He, P. & Cline, D. (2000). Demonstration of 8 × 1018 photons/second peaked at 1.8Å in a relativistic Thomson scattering experiment. Phys. Rev. ST Accel. Beams 3, 090702.CrossRefGoogle Scholar
Schnürer, M., Andreev, A.A., Steinke, S., Sokollik, T., Paasch-Colberg, T., Henig, A., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T., Habs, D. & Sandner, W. (2011). Comparison of femtosecond laser-driven proton acceleration using nanometer and micrometer thick target foils. Laser Part. Beams 29, 437446.CrossRefGoogle Scholar
Schoenlein, R.W., Leemans, W.P., Chin, A.H., Volfbeyn, P., Glover, T.E., Balling, D., Zolotorev, M., Kim, K.-J., Chattopadhyay, S. & Shank, C.V. (1996). Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering. Sci. 274, 236238.CrossRefGoogle Scholar
Schwoerer, H., Liesfeld, B., Schlenvoigt, H.-P., Amthor, K.-U. & Sauerbrey, R. (2006). Thomson-backscattered X rays from laser-accelerated electrons. Phys. Rev. Lett. 96, 014802.CrossRefGoogle ScholarPubMed
Sprangle, P., Ting, A., Esarey, E. & Fisher, A. (1992). Tunable, short pulse hard x-rays from a compact laser synchrotron Source. J. Appl. Phys. 72, 50325038.CrossRefGoogle Scholar
Sprangle, P. & Esarey, E. (1992). Interaction of ultrahigh laser fields with beams and plasmas. Phys. Fluids B 4, 22412248.CrossRefGoogle Scholar
Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215221.CrossRefGoogle Scholar
Tavella, F., Nomura, Y., Veisz, L., Pervak, V., Marcinkevičius, A. & Krausz, F. (2007). Dispersion management for a sub-10-fs 10 TW optical parametric chirped-pulse Amplifier. Opt. Lett. 32, 22272229.CrossRefGoogle ScholarPubMed
Ting, A., Fischer, R., Fisher, A., Moore, C.I., Hafizi, B., Elton, R., Krushelnick, K., Burris, R., Jackel, S., Evans, K., Weaver, J.N., Sprangle, P., Esarey, E., Baine, M. & Ride, S. (1996). Demonstration experiment of a laser synchrotron source For tunable, monochromatic X-rays at 500 eV. Nucl. Instrum. Methods Phys. Res., Sect. A 375, ABS68ABS70.CrossRefGoogle Scholar
Wu, H.-C. & Meyer-ter-Vehn, J. (2009). The reflectivity of Relativistic ultra-thin electron layers. Eur. Phys. J. D 55, 443449.CrossRefGoogle Scholar
Wu, H.-C., Meyer-ter-Vehn, J., Fernández, J. & Hegelich, B.M. (2010). Uniform laser-driven relativistic electron layer for coherent thomson scattering. Phys. Rev. Lett. 104, 234801.CrossRefGoogle ScholarPubMed
Zhou, weimin, Gu, Yuqiu, Hong, Wei, Cao, Leifeng, Zhao, Zongqing, Ding, Yongkun, Zhang, Baohan, Cai, Hongbo & Kunioki, Mima. (2010). Enhancement of monoenergetic proton beams via cone substrate in high intensity laser, pulse-double layer target interactions, Laser Part. Beams 28, 585590.CrossRefGoogle Scholar