Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T04:54:00.622Z Has data issue: false hasContentIssue false

Nuclear driven flashlamps

Published online by Cambridge University Press:  09 March 2009

M. A. Prelas
Affiliation:
University of Missouri-Columbia
F. P. Boody
Affiliation:
Nuclear-Pumped Laser Corp.
G. H. Miley
Affiliation:
University of Illinois at Urbana-Champaign
J. F. Kunze
Affiliation:
University of Missouri-Columbia

Abstract

Due to the low power density of pumping schemes for nuclear-pumped lasers prior to 1978, a method of utilizing the efficient production of narrow band fluorescence from excimers was developed. This method has since been referred to as a nuclear driven flashlamp. It is possible to achieve sufficient power densities, when combining the flashlamp with novel techniques of reactor/laser interfaces, to drive efficient, high power lasers directly with products from nuclear reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akerman, M. A., Miley, G. H. & McArthur, D. A. 1977 A Helium Mercury Direct Nuclear-Pumped Laser, Appl. Phys. Lett, 30, 409.Google Scholar
Anderson, A.& Dominey, D. 1968The Radiolysis of Carbon Dioxide,” Radiat. Res. Rev., 1, 269.Google Scholar
Anderson, R. N., Selvadvray, G. & Goldstein, M. K. 1981 “Nuclear Reactors Capable of In-Situ Fuel Processing” Alternative Energy Sources II, Hemisphere Publishing, NY, 2339.Google Scholar
Angrist, S. 1971, Direct Energy Conversion, Allyn and Bacon Inc., Boston, MA.Google Scholar
Behrens, D. J. 1949 “The Effect of Holes in a Reactivity Material on the Passage of Neutrons,”Proc. of Physical Society (London), 62, Series A, 607.Google Scholar
Black, G., Sharpless, R. L. & Lorentz, D. C. 1979 “XeF(B, C) Production and Kinetics form XeF2 Photolysis with VUV Radiation,”Proc. of Topical Meeting on Excimer Lasers, IEEE Cat. No. 79CH1470–4QEA.Google Scholar
Boody, F. P. & Prelas, M. A. 1983 “Photolytic Dual-Media Nuclear Pumping of Excimer Lasers,” Excimer Lasers-83, Rhodes, C. K., Egger, H. & Plummer, H. eds, AIP, 349354.Google Scholar
Boody, F. P., Prelas, M. A., Anderson, J. H., Nagalingham, S. J. S. & Miley, G. H. 1978 “Progress in Nuclear-Pumped Lasers,” Radiation Energy Conversion in Space, (Editor Billman, K. W.), AIAA, 61, 379.Google Scholar
Boody, F. P., “A UF6 Fueled Rare Gas Halide/Group VI Laser/Reactor,” Unpublished Laboratory Notes, University of Illinois, Nuclear Engineering, (Sept. 1978).Google Scholar
Boody, F. P., Nagalingham, S. J. S., Prelas, M. A. & Miley, G. H. (May 1977-May 1978) “Nuclear-Pumped XeF(B-X) Gain Experiments,” Unpublished Laboratory Notes.Google Scholar
Boody, F. P. April, 1977Nuclear Generated Excimer Radiation for Pumping Lasers,” Unpublished Report, University of Illinois, Nuclear Engineering Program.Google Scholar
Boody, F. P. & Miley, G. H. Oct. 1979Unpublished Data on XeBr* which indicated a 15% efficiency,” Nuclear Engineering, University of Illinois at Champaign-Urbana.Google Scholar
Baldwin, G. C. 1981On Vacuum Ultraviolet Light Production by Nuclear Irradiation of Liquid and Gaseous Xenon,” Unpublished Report, Los Alamos National Laboratory.Google Scholar
Calvert, J. & Pitts, J. 1966 Photochemistry, Wiley & Sons, New York.Google Scholar
Carter, B. D., Rowe, M. J. & Schneider, R. T. 1980Direct Nuclear-Pumping of He-Ne,” Appl. Phys. Lett., 36, 115.Google Scholar
Chung, A. K. & Prelas, M. A. 1987 “Sensitivity Analysis of Excimer Fluorescence Generated from Charged Particle Excitation,” Lasers and Particle Beams, 5(1), 125.CrossRefGoogle Scholar
Chung, A. K. & Prelas, M. A. 1984Charged Particle Spectra from 235U and 10B Micropellets and Slab Coatings,” Laser and Particle Beams, 2(2), 201211.CrossRefGoogle Scholar
Chung, A. K. & Prelas, M. A. 1983Charged Particle Spectra From B-10 and UO2 Slab and Spherical Sources,” 1983 IEEE Int. Conf. on Plasma Sci. IEEE Cat. No. 83CH1847–3.Google Scholar
Clark, J. W. & McLafferty, G. H. 1971 “Summary of Research on the Nuclear Lightbulb Reactor,” Research on Uranium Plasmas and Their Technological Applications, NASA SP-236, 2328.Google Scholar
Coelseberg, et al. 1958Investigation of a Nuclear Fuel Making It Possible to Use the Kinetic Energy of Fission Products for Chemical Synthesis,” Second International Conference on the Peaceful Uses of Atomic Energy, 29, 424.Google Scholar
Cole, T. 1983Thermoelectric Energy Conversion with Solid Electrolytes,” Science, 221, (4614), 915920.Google Scholar
Companion, A. & Winslow, G. 1960 J. Opt. Soc. Am., 50(11), 1043.Google Scholar
Conner, W. P. & Davis, W. E. Nov. 11, 1962 United States Patent No. 3, 065, 159.Google Scholar
Cox, J. D. & Schneider, R. T. 1984 “Nuclear-Pumped Lasers Using Radiant Transfer,” Lasers and Related Plasma Phenomena, Vol. 6, Plenum Press, NY.Google Scholar
Cox, J. D., May 1982 “A Nuclear Excited Xenon Flashlamp,” Ph.D. Dissertation, University of Florida, Nuclear Science & Engineering.Google Scholar
DeYoung, R. J. 1980 “NASA Langley Nuclear Driven Flashlamp Experiments,” Personal Communication.Google Scholar
DeYoung, R. J., Jalufka, N. W. & Hohl, F. 1977Nuclear-Pumped Lasing of 3He-Xe and 3He-Kr,” Appl. Phys. Lett., 30, 19.CrossRefGoogle Scholar
DeYoung, R. J., Wells, W. E., Miley, G. H. & Verdeyen, J. T. 1976Direct Nuclear Pumping of a Ne-N2 Laser,” Appl. Phys. Lett., 28, 519.CrossRefGoogle Scholar
Eden, G. 1979. NRL Ion Driven Excimers Performance with Buffer Gases,” Gaseous Electronics Laboratory, University of Illinois at Champaign-Urbana.Google Scholar
Ebert, P. J., Terderber, L. J., Koehler, H. A., Kuckuck, R. W. & Redhead, D. L. 1974Xenon Pumped by Gamma Rays,” IQEC-8, San Francisco, IEEE, NY.Google Scholar
Eckstrom, D. J., Lorents, D. C, Nakano, H. H., Rothem, T., Betts, J. A. & Lainhart, M. E. 1982 “Development of Rare Gas Excimer Photolytic Drivers,” SRI Intl. Report Number MP81–82, Menlo Park, CA.Google Scholar
Eckstrom, D. J.Lorents, D.C., Nakano, H. H., Rothem, T., Betts, J. A. & Lainhart, M. E. 1979 “The Performance of as a Photolytic Driver at Low e-beam Excitation Rates,” Proc. of Topical Meeting on Excimer Lasers, IEEE Cat. No. 79CH1470–4QEA.Google Scholar
Flowers, W. & Jenney, J. 1983 Proceeding of the IEEE, pp. 858859.Google Scholar
Forestier, B. & Fontaine, B. 1978 Appl. Phys. Lett., 32(9) 569.Google Scholar
Frielander, G., Kennedy, J. W. & Miller, J. M. 1964 Nuclear and Radiochemistry, Wiley and Sons, New York.Google Scholar
Glasstone, S. & Sesonske, S. 1981 Nuclear Reactor Engineering, (Van Nostrand Reinhold Company, New York, third edition).Google Scholar
Gu, Guoxiang, Prelas, M. A., Kunze, J. F. 1987 “Nuclear-Pumped Laser/Reactor Criticality Studies,” to be published in Symposium on Space Nuclear Power, Elgenk, M. and Hoover, M. eds., Orbit Book Co.Google Scholar
Harrington, J., Bobbs, B., Braunstein, M., Kim, R., Stearns, R. & Braunstein, R. 1978 Appl. Optcs, 17(40), 1541.Google Scholar
Hatch, L., Regan, W. & Powell, J. 1961Fluidized Solids as a Nuclear Fuel for Rocket Propulsion,” American Rocket Society Journal, 31, 547.Google Scholar
Helmick, H. H., Fuller, J. I. & Schneider, R. T. 1975Direct Nuclear Pumping of a Helium-Xenon Laser,” Appl. Phys. Lett., 26, 327.CrossRefGoogle Scholar
Jackomis, W. N. & Turman, B. N. 1970The Colloid Core Nuclear Reactor Concept,” Aerospace Research Laboratories, Air Force System Command, USAF, Wright-Patterson Air Force Base, Ohio, ARL70–0167.Google Scholar
Jalufka, N. W. 1983Direct Nuclear-Pumped Lasers,” NASA Technical Paper 2091.Google Scholar
Jalufka, N. W., DeYoung, R. J., Hohl, F. & Williams, M. D. 1976, “Nuclear Pumped 3He-Ar Laser Excited by the 3He(n, p)T Reaction,” Appl. Phys. Lett., 29, 189.Google Scholar
Javedani, J. & Prelas, M. A. 1986 “Concentrating Properties of Simple Two-Dimensional Geometries For Isotropic Light,” Laser Interactions and Related Plasma Phenomena, Vol. 7, Hora, H. & Miley, G. H., eds. Plenum Press, 155.Google Scholar
Kerrebrock, J. L. & Meghreblian, R. V. 1961Vortex Containment for the Gaseous-Fission Rocket,” J. of Aerospace Sciences, 28, 710.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics, McGraw-Hill Book Company, 24.Google Scholar
Kunze, J. F., Boehm, R. & Jacobs, H. R., April to June, 1975 Geothermal Project Report, Idaho National Engineering Laboratory, ANCR 1247, p. 2327.Google Scholar
Kunze, J. F., Lofthouse, J. H., Cooper, C. G. & Hyland, R. E. June 1973 “Feasibility Study of Full Reactor Gas Core Demonstration Test,” NASA CR 121190, ANCR 1120.Google Scholar
Kunze, J. F., Lofthouse, J. H., Cooper, C. G. & Hyland, R. E. 1972Benchmark Gas Core Critical Experiments,” Nucl. Sci. & Engr., 47, 5965.Google Scholar
Kunze, J. F., Pincock, G. D. & Hyland, R. E. 1969Cavity Reactor Critical Experiments,” Nuclear Applications, 6, 104115.Google Scholar
Lee, G. 1978 Radiation Energy Conversion in Space, Billman, K. Editor, AIAA, New York.Google Scholar
Lim, S. & Fisher, E. R. Feb., 1981 “Modeling and Analysis of Nuclear-Pumped XeF(C-A) Laser Systems,” Final Report USA/BMD DASG 60–79–C0056.Google Scholar
Lo, R. & Miley, G. H. 1974, IEEE Trans, on Plasma Sci., Vol. PS-2, 198205.CrossRefGoogle Scholar
Lyons, P. B., Clarke, J. S. & Metzger, D. S. 1974, “Gamma Initiated HF Laser,” IQEC-8, San Francisco.CrossRefGoogle Scholar
Martin, A. F. (Oct. 27, 1964), United States Patent No. 31, 154, 473 published.Google Scholar
McArthur, D. A. & Tollefsrud, P. B. 1975Observation of Laser Action in CO Gas Excited Only by Fission Fragments,” Appl. Phys. Lett., 26, 187.CrossRefGoogle Scholar
Miley, G. H. 1984 “Review of Nuclear-Pumped Lasers,” Laser Interactions and Related Plasma Phenomena, Vol. 6, Hora, H. & Miley, G., Editors, Plenum Press, 47.Google Scholar
Miley, G. H., Nagalingham, S. J. S., Boody, F. P. & Prelas, M. A. 1978 “Production of XeF(B) by Nuclear-Pumping,”Proceedings of the International Conference on Lasers '78, 513.Google Scholar
Miley, G. H., Nagalingham, S. J. S., Boody, F. P. & Prelas, M. A. 1978Nuclear Pumping of XeF(B-X), A Candidate Laser Fusion Driver,” Trans. Am. Nucl. Soc., 30, 26.Google Scholar
Miley, G. H., Boody, F. P., Nagalingham, S. J. S. & Prelas, M. A. 1978Production of XeF(B-X) by Nuclear-Pumping,” Bull. Am. Phys. Soc., 24, 117.Google Scholar
Miley, G. H. 1977 “Direct Nuclear Pumped Lasers: Status and Potential Applications,” Laser lnterations and Related Plasma Phenomena, (Editors Schwarz, H. & Hora, H.), Plenum Press, 4A, 181229.Google Scholar
Miley, G. (1970), Direct Energy Conversion, ANS, LaGrange Park, Illinois.Google Scholar
Miller, J. G., Hagefstration, J. E., Womack, D. A., & McDaniel, B. G. 1983 “High Power Nuclear Photo Pumped Laser,” USA Patent #4,398,294.Google Scholar
Mis'kevich, A. I., Dmitriev, A. B., Il'Yashchenko, V. S., Salamakha, B. S., Stepanov, V. A. & Gorodkov, E. M. 1980Lasing in Cd Vapor Pumped by Products of the Nuclear Reaction 3He(n, p)T,” Soviet Physics-Tech. Phys. Lett., 6, 352.Google Scholar
Murray, J. R. & Rhodes, C. K. 1976The Possibility of High-Energy-Storage Lasers Using the Auroral and Transauroral Transitions of Column-VI Elements,” J. Appl. Phys., 47 (11), 50415058.Google Scholar
Nelson, S., Grey, J. & Williams, P. 1965Conceptual Study of a Liquid Core Nuclear Reactor,” Journal of Spacecraft and Rockets, 2, 384.Google Scholar
Nichols, K. E. June 1980Direct Contact Heat Exchange,” Bulletin of Geothermal Resources Council. Vol. 9. #6. p. 27.Google Scholar
Platzmann, R. L. 1961 “Total Ionization in Gases by High Energy Particles: An Appraisal of our Understanding,” Int. Appl. Rad. Isotopes, Pergamon Press, 10, 116.Google Scholar
Powell, H. T. & Wilder, R. E. 1979 “XeF Lasers Using XeF2 Photodissociation”,Proc. of Tropical Meeting on Excimer Lasers, IEEE Cat. No. 79CH1470–4QEA.Google Scholar
Prelas, M. A., Boody, F. P. & Kunze, J. F. 1986 “A Compact Aerosol Core Reactor—Laser Fueled with Reflective Micropellets,” Lasers and Related Plasma Phenomena, Vol. 7, Plenum Press, NY, 143.Google Scholar
Prelas, M. A., Boody, F. P. & Zediker, M. S. 1986 “An Aerosol Core Nuclear Reactor For Space-Based High Energy/Power Nuclear-Pumped Lasers,” in Space Nuclear Power Systems. Vol IV, Orbit Book Co.Google Scholar
Prelas, M. A. 1985 “Excimer Research Using Nuclear-Pumping Facilities,” National Science Foundation final report on Contract #CPE-8302772.Google Scholar
Prelas, M. A., Romero, J. B., Pearson, E. F. 1982A Critcal Review of Fusion Systems for Radiolytic Conversion of Inorganics to Gaseous Fuels,” Nuclear Technology/Fusion, 2, 143.Google Scholar
Prelas, M. A., Boody, F. P. & Zediker, M. S. 1984 “An Aerosol Core Nuclear Reactor For Space-Based High Energy/Power Nuclear-Pumped Lasers,” 1st Symposium on Space Nuclear Power Systems, University of New Mexico.Google Scholar
Prelas, M. A. & Boody, F. P. 1982 “Charged Particle Transport in Uranium Micropellets,” 1982 IEEE Int. Conf. on Plasma Sci, IEEE Cat. No. 82CH1770–7.Google Scholar
Prelas, M. A. & Jones, G. L. 1982Design Studies of Volume-Pumped Photolytic Systems using a Photon Transport Code,” J. Appl. Phys., 53(1), 165.Google Scholar
Prelas, M. A. (Sept. 1981) “Dust Core Reactor Concept,” Notarized Unpublished Laboratory Notes, Univ. of Missouri, Nuclear Engineering Program.Google Scholar
Prelas, M. A. & Loyalka, S. K. 1981A Review of the Utilization of Energetic Ions for the Production of Excited Atomic and Molecular States and Chemical Synthesis,” Progress in Nuclear Energy, 8, 3552.Google Scholar
Prelas, M. A. & Schlapper, G. A. 1981Comments on ‘Direct Nuclear-Pumping of He-Ne’,” 52, 496.Google Scholar
Prelas, M. A., Lecours, M. J., Schlapper, G. M. & Brugger, R. M. 1980Nuclear-Pumped Laser Research at the University of Missouri.” Trans. Am. Nucl. Soc, 34, 810.Google Scholar
Prelas, M. A. November, 1979 “Nuclear-Pumped Photolytic Energy Focus,” University of Missouri Patent Disclosure, #80-P-UMC-020.Google Scholar
Prelas, M. A. 1979 “Nuclear-Pumping of the Atomic Carbon Laser,” Ph.D. Dissertation, Nuclear Engineering, University of Illinois at Champaign-Urbana.Google Scholar
Prelas, M. A., Boody, F. P. & Miley, G. H. (Sept. 1977a) “Nuclear-Pumped Ar Fluorescence Experiment with N2O Mixtures to drive the O(1S) VI Laser,” Unpublished Laboratory Notes, University of Illionis, Nuclear Engineering Program.Google Scholar
Prelas, M. A., Akerman, M. A., Boody, F. P. & Miley, G. H. 1977 bDirect Nuclear-Pumped 1.45 μ Atomic Laser in Mixtures of He-CO and He-CO2,Appl. Phys. Lett., 31, 679.Google Scholar
Rhodes, C. K., & Lorentz, T., (1976), 1976 Conf. on Uranium Plasmas, Princeton, N.J.Google Scholar
Rhodes, C. K. 1979 Excimer Lasers, Springer-Verlag New York Inc., New York.Google Scholar
Rowe, M. J., Liang, R. H. & Schneider, R. T. 1981 “Nuclear-Pumping CO2”,Proceedings of 1981 IEEE Int. Conf. on Plasma Sci, 149.Google Scholar
Safanov, G. 1955The Criticality and Some Potentials of Cavity Reactors,” (abridged), The RAND Corp., RM-1835.Google Scholar
Schneider, R. T. & Hohl, F. 1984 “Nuclear-Pumped Lasers,” Advances in Nuclear Science and Technology, Lewins, J. & Becker, M. Eds, Plenum Press, New York.Google Scholar
Schneider, R. T., Carter, B. D. & Rowe, M. J. 1981Response to ‘Comments on Direct Nuclear-Pumping of He-Ne’,” 52, 6980.Google Scholar
Schwenk, F. C. & Franklin, C. E. 1971 “Comparison of Closed and Open Cycle Systems,” Research on Uranium Plasmas and Their Technological Applications, NASA SP-236, 312.Google Scholar
Siegaman, A. E. 1986 Lasers, University Science Books, Mill Valley, CA.Google Scholar
Swingle, J. C., Turner, C. E., Murray, J. R., George, E. V. & Krupke, W. F. 1976Photolytic Pumping of the Iodine Laser by XeBr*,” Appl. Phys. Lett., 28(7), 387388.Google Scholar
Tang, Y. S., Stefanko, J. S. & Dickson, P. W. 1971 “The Colloid-Core Concept—A Possible Forerunner for the Gaseous Core,” Research on Uranium Plasmas and Their Technological Applications, NASA SP-236, 29–26.Google Scholar
Thom, K. & Schneider, R. T. 1972Nuclear Pumped Gas Lasers,” AIAA Journal, 10, 400.Google Scholar
Verdeyen, J. 1981 Laser Electronics, Prentice Hall, Inc. Englewood Cliffs, NJ.Google Scholar
Veziroglu, T. 1981, Alternative Energy Sources II, Vol. 6, Hemisphere Publishing Corporation, New York.Google Scholar
Voinov, A. M., Dovbysh, L. E., Krivonosov, V. N., Mel'nikov, S. P., Podmoshenskii, I. V. & Sinyanskii, A. A. 1979Low-Threshold Nuclear-Pumped Lasers Using Transitions of Atomic Xenon,” Soviet Physics-Dokladt, 24, 189.Google Scholar
Voinov, A. M., Dovbysh, L. E., Krivonosov, V. N., Mel'nikov, S. P., Podmoshenskii, I. V. & Sinyanskii, A. A. 1979a “Nuclear-Pumped IR Lasers Using Arl, KrI, and Xel Transitions,” Soviet Phys. Tech. Phys. Lett., 5, 171.Google Scholar
Walters, R. A., Cox, J. D. & Schneider, R. T., May 22, 1979 “UV Diagnostics of Charged Particle Excited Gases,” Final Technical Report, BMD-ATC DAS 60–78–C0045.Google Scholar
Walters, R. A., Cox, J. D. & Schneider, R. T., 1980 Trans. Am. Nuc. Soc, 34, 810.Google Scholar
Walters, R. A., Cox, J. D. & Schneider, R. T., April, 1981 “Gain and Lasing in Nuclear Excited Laser Systems,” Final Report, USA/BMD DASG60–79–C0083.Google Scholar
Welford, W. & Winston, R. 1978 The Optics of Nonimaging Concentrators, Academic Press, New York.Google Scholar
Willet, C. S. 1974 Introduction to Gas Lasers: Population Inversion Mechanisms, Pergamon Press, 263384.Google Scholar
Wilson, J. W. & Shapiro, A., 1980Nuclear-Induced Excimer Fluorescence,” J. Appl. Phys., 51, 2387.Google Scholar
Wilson, J. W. 1980Nuclear-Induced XeBr* Photolytic Laser Model,” Appl. Phys. Lett., 37, 695.Google Scholar
Wrighton, M. S. 1979Photochemistry,” Chem. Engr. News, 57, 2947.Google Scholar