Hostname: page-component-cc8bf7c57-ksm4s Total loading time: 0 Render date: 2024-12-12T01:49:18.799Z Has data issue: false hasContentIssue false

Nonstationarity of stimulated Raman scattering in a homogeneous plasma slab

Published online by Cambridge University Press:  09 March 2009

M. M. Škorić
Affiliation:
Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Yugoslavia

Abstract

Nonstationarity of stimulated Raman backscattering in a finite homogeneous plasma slab is examined. Slowly varying envelope equations are analyzed taking into account a damping and a convection of an electron plasma wave, with a nonzero source boundary condition assumed. The linear analysis method is used for examination of stability of saturated stationary amplitude solutions. When linear wave damping is sufficiently small or absent, these solutions are spatially periodic and appear linearly unstable to small perturbations. However, a direct numerical simulation of the backscattering process in a lossless case shows that the system tends to quasistationary state with maximum reflectivity (R → 1). If the electron plasma wave damping exceeds a certain critical value, a spatially aperiodic solution raises and the Raman backscattering process becomes stable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acton, F.S. 1970 Numerical Methods That Work (Harper & Row, New York).Google Scholar
Baldis, H.A. et al. 1991 In Handbook of Plasma Physics, vol. 3 Rubenchik, A.M. & Witkowski, S. eds. (North-Holland, Amsterdam).Google Scholar
Bar-Joseph, I. et al. 1985 J. Opt. Soc. Am. 2, 1606.CrossRefGoogle Scholar
Baumgärtel, K. et al. 1984 Opt. Comm. 51, 53.CrossRefGoogle Scholar
Blaha, R. et al. 1988 Europhys. Lett. 7, 237.CrossRefGoogle Scholar
Bonnaud, G. et al. 1990 Phys. Fluids B 2, 1618.CrossRefGoogle Scholar
Casanova, M. et al. 1985 Phys. Rev. Lett. 54, 2230.CrossRefGoogle Scholar
Coste, J. & Montes, C. 1986 Phys. Rev. A 34, 3940.CrossRefGoogle Scholar
Forslund, D.W. et al. 1975 Phys. Fluids 18, 1002.CrossRefGoogle Scholar
Fuchs, V. 1976 Phys. Fluids 19, 1554.CrossRefGoogle Scholar
Harvey, R.W. & Schmidt, G. 1975 Phys. Fluids 18, 1395.CrossRefGoogle Scholar
Hüller, S. 1991 Phys. Fluids B 3, 3317.CrossRefGoogle Scholar
Hüller, S. et al. 1991 Phys. Fluids B 3, 3339.CrossRefGoogle Scholar
Johnson, R.V. & Marburger, J.H. 1971 Phys. Rev. A 4, 1175.CrossRefGoogle Scholar
Jovanović, M.S. & Škorić, M.M. 1991 In Proceedings of the 21st European Conference on Laser Interaction with Matter, Warsaw 1, pp. 55–58.Google Scholar
Kruer, W.L. 1976 In Advances of Plasma Physics, vol. 6, Simon, A. & Thompson, W.B., eds. (Wiley & Sons, New York), pp. 237269.Google Scholar
Pietsch, P. et al. 1989 Phys. Fluids 1, 286.CrossRefGoogle Scholar
Randall, C.J., & Albritton, J.R. 1984 Phys. Rev. Lett. 52, 1887.CrossRefGoogle Scholar
Rose, H.A. et al. 1987 Phys. Rev. Lett. 58, 2547.CrossRefGoogle Scholar
Rozmus, W. et al. 1987 Phys. Fluids 30, 2181.CrossRefGoogle Scholar
Sagdeev, R.Z. & Galeev, A.A. 1969 In Nonlinear Plasma Theory (Benjamin, New York), p. 16.Google Scholar