Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T00:01:08.723Z Has data issue: false hasContentIssue false

New micro-cones targets can efficiently produce higher energy and lower divergence particle beams

Published online by Cambridge University Press:  07 September 2010

N. Renard-Le Galloudec*
Affiliation:
Nevada Terawatt Facility, Department of Physics, University of Nevada, Reno, Nevada
E. D'Humieres
Affiliation:
CELIA, Université de Bordeaux - CNRS - CEA, Talence, France
*
Address correspondence and reprint requests to: N. Renard-Le Galloudec, Nevada Terawatt Facility, Department of Physics, University of Nevada, Reno, Nevada 89557. E-mail: [email protected]

Abstract

Small conical targets have been used in high intensity laser target interaction mostly in the context of fast ignition. We demonstrate that when cone targets are shaped appropriately and used with specific interaction conditions, they can produce particle beams of higher maximum energy and number in a lower angular divergence than flat targets. This is relevant to fast ignition, small compact particle beams, medical applications, focused ion and/or electron beam microscopes. This fact carries the potential to produce particle beams that are no longer limited by the characteristics of the laser. Note that for fast ignition, reducing the divergence of the beam lowers the energy requirement and enhances the energy deposition into the compressed fuel.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, N.B., Goodin, D.T. & Stephens, R.B. (2007). Target mounting systems for rep-rated lasers. Fusion Science and Technology 51, 795799.CrossRefGoogle Scholar
Alexander, N.B., Stephens, R.B., Goodin, D.T., Petzoldt, R.W., Lee, G.E., Sheliak, J.D., Tolley, M.K., Neely, D. & Foster, P. (2009). Rep-rated target production — A step towards IFE target production. Proc. Sixth International Conference on Inertial Fusion Sciences and Applications. San Francisco.Google Scholar
Basov, N.G. & Krokhin, O.N. (1963). Laser Driven Thermonuclear Reactions. Paris: Dunod.Google Scholar
Bayramian, A., Armstrong, P., Ault, E., Beach, R., Bibeau, C., Caird, J., Campbell, R., Chai, B., Dawson, J., Ebbers, C., Erlandson, A., Fei, Y., Freitas, B., Kent, R., Liao, Z., Ladran, T., Menapace, J., Molander, B., Payne, S., Peterson, N., Randles, M., Schaffers, K., Sutton, S., Tassano, J., Telford, S. & Utterback, E. (2007). The mercury project: a high average power, gas-cooled laser for inertial fusion energy development. Fusion Sci. Techn. 52, 383387.CrossRefGoogle Scholar
Bieniosek, F.M., Henestroza, E. & Ni, P. (2010). Funnel cone for focusing intense ion beams on a target. Laser Part. Beams 28, 209214.CrossRefGoogle Scholar
Bin, J.H., Lei, A.L., Cao, L.H., Yang, X.Q., Huang, L.G., Yu, M.Y. & Yu, W. (2009). Influence of the target front-surface curvature on proton acceleration in laser-foil interaction. Phys. Plasmas 16, 043109.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H., Bulanov, S. (2002). Electric field detection in laser plasma interactions experiments via the proton imaging technique. Phys Plasmas 9, 2214.CrossRefGoogle Scholar
Borghesi, M., Sarri, G., Cecchetti, C.A., Kourakis, I., Hoarty, D., Stevenson, R.M., James, S., Brown, C.D., Hobbs, P., Lockyear, J., Morton, J., Willi, O., Jung, R. & Dieckmann, M. (2010). Progress in proton radiography for diagnosis of ICF-relevant plasmas. Laser Part. Beams 28, 277.CrossRefGoogle Scholar
Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ions accelerators in proton therapy. Plasma Phys. Rept. 28, 453456.CrossRefGoogle Scholar
Burns, P.M., Sethian, J.D., Wolford, M.F., Myers, M., Giuliani, J.L., Hegeler, F., Friedman, M. & Jaynes, R. (2009). Electra: A KrF electron-beam-pumped high-average-power laser system for inertial confinement fusion applications. Proc. of SPIE 7196, 719607/12.CrossRefGoogle Scholar
Chen, Z.L., Kodama, R., Nakatsutsumi, M., Nakamura, H., Tampo, M., Tanaka, K.A., Toyama, Y., Tsutsumi, T. & Yabuuchi, T. (2005). Enhancement of energetic electrons and protons by cone guiding of laser light. Phys. Rev. E 71, 036403.CrossRefGoogle ScholarPubMed
Dunne, M. (2006). Laser-driven particle accelerators. Sci. 312, 375.Google ScholarPubMed
Flippo, K.A., d’Humières, E., Gaillard, S.A., Rassuchine, J., Gautier, D.C., Schollmeier, M., Nurnberg, F., Kline, J.L., Adams, J., Albright, B., Bakeman, M., Harres, K., Johnson, R.P., Korgan, G., Letzring, S., Malekos, S., Renard-Le Galloudec, N., Sentoku, Y, Shimada, T, Roth, M, Cowan, T. E., Fernández, J. C. & Hegelich, B.M. (2008). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Phys. Plasmas 15, 056709.CrossRefGoogle Scholar
Fourkal, E., Shahine, B., Ding, , Li, , , C.S., , M., Tajima, J.S. & Ma, C.-M. (2002). Particle-in-cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 29, 2788.CrossRefGoogle ScholarPubMed
Fuchs, J., Cowan, T.E., Audebert, P., Ruhl, H., Gremillet, L., Kemp, A., Allen, M., Blazevic, A., Gauthier, J.-C., Geissel, M., Hegelich, M., Karsch, S., Parks, P., Roth, M., Sentoku, Y., Stephens, R. & Campbell, E.M. (2003). Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett. 91, 255002.CrossRefGoogle ScholarPubMed
Higginson, D.P., Stephens, R.B. & Brocato, B.C. (2006). Flexible large batch production of high energy density physics targets. 48th annual meeting of the division of plasma physics. Philadelphia, PA.Google Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.CrossRefGoogle Scholar
Johzaki, T., Sakagami, H., Nagatomo, H. & Mima, K. (2007). Holistic simulation for FIREX project with FI3. Laser Particle Beams 25, 621629.CrossRefGoogle Scholar
Kanazawa, S., Kondo, S., Shimomura, T., Tanoue, M., Nakai, Y., Sasao, H., Wakai, D., Sakaki, H., Bolton, P., Choi, I. W., Sung, J. H., Lee, J., Oishi, Y., Fujii, T., Nemoto, K., Souda, H., Noda, A., Iseki, Y. & , T.Yoshiyuki, T. (2009). Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Appl. Phys. Lett. 94, 061107.Google Scholar
Kindel, J. & Lindman, E.L. (1979). Target design for energetic ion. Nucl. Fusion 19, 597606.CrossRefGoogle Scholar
Kodama, R., Azechi, H., Fujita, H., Habara, H., Izawa, Y., Jitsuno, T., Jozaki, T., Kitagawa, Y., Krushelnick, K., Matsuoka, T., Mima, K., Miyanaga, N., Nagai, K., Nagatomo, H., Nakai, M., Nishimura, H., Norimatsu, T., Norreys, P., Shigemori, K., Shiraga, H., Sunahara, A., Tanaka, K.A., Tampo, M., Toyama, Y., Tsubakimoto, K., Yamanaka, T. & Zepf, M. (2004). Fast plasma heating in a cone-attached geometry—towards fusion ignition. Nucl. Fusion 44, S276–283.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitigawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nat. 412, 798802.CrossRefGoogle ScholarPubMed
Koenig, M., Henry, E., Huser, G., Benuzzi-Mounaix, A., Faral, B., Martinolli, E., Lepape, S., Vinci, T., Batani, D., Tomasini, M., Telaro, B., Loubeyre, P., Hall, T., Celliers, P., Collins, G., DaSilva, L., Cauble, R., Hicks, D., Bradley, D., MacKinnon, A., Patel, P., Eggert, J., Pasley, J., Willi, O., Neely, D., Notley, M., Danson, C., Borghesi, M., Romagnani, L., Boehly, T. & Lee, K. (2004). High pressure generated by laser-driven shocks: application to planetary physics. Nucl. Fusion 44, S208S214.CrossRefGoogle Scholar
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Part. Beams 27, 255272.CrossRefGoogle Scholar
Lasinski, B.F., Langdon, A.B., Still, C.H., Tabak, M. & Town, R.P.J. (2009). Particle-in-cell simulations of short-pulse, high intensity light impinging on structured targets. Phys Plasma 16, 012705.CrossRefGoogle Scholar
Latif, A., Anwar, N.S., Aleem, M.A., Rafique, M.S. & Khaleeq-Ur-Rahman, M. (2009). Influence of number of laser shots on laser induced microstructures on Ag and Cu targets. Laser Part. Beams 27, 129136.CrossRefGoogle Scholar
Li, J. (2007). The focused ion beam microscope — More than a precision ion milling machine. JOM 58, 10474830.Google Scholar
MoberlyChan, W. (2009). Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures. J. Phys. Condensed Mat. 21, 224013.Google ScholarPubMed
Nakamura, H., Chrisman, B., Tanimoto, T., Borghesi, M., Kondo, K., Nakatsutsumi, M., Norimatsu, T., Tampo, M., Tanaka, K.A., Yabuuchi, T., Sentoku, Y. & Kodama, R. (2009). Superthermal and efficient-heating modes in the interaction of a cone target with ultraintense laser light. Phys. Rev. Lett. 102, 045009.CrossRefGoogle ScholarPubMed
Nakamura, T., Kato, S., Nagatomo, H. & Mima, K. (2004). Surface-magnetic-field and fast-electron current-layer formation by ultraintense laser irradiation. Phys. Rev. Lett. 93, 265002.CrossRefGoogle ScholarPubMed
Nakamura, T., Mima, K., Sakagami, H., Johzaki, T. & Nagatomo, H. (2008). Generation and confinement of high energy electrons generated by irradiation of ultra-intense short laser pulses onto cone targets. Laser Part. Beams 26, 207212.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagamoto, H., Mima, K. & Koga, J. (2007). Optimization of cone target geometry for fast ignition. Phys. Plasma 14, 103105.CrossRefGoogle Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nakatsutsumi, M., Kodama, R., Norreys, P.A., Awano, S., Nakamura, H., Norimatsu, T., Ooya, A., Tampo, M., Tanaka, K.A., Tanimoto, T., Tsutsumi, T. & Yabuuchi, T. (2007). Reentrant cone angle dependence of the energetic electron slope temperature in high-intensity laser-plasma interactions. Phys. Plasma 14, 050701.CrossRefGoogle Scholar
Nishiuchi, M., Daito, I., Ikegami, M., Daido, , Mori, H.M., Orimo, S., Ogura, K., Sagisaka, A., Yogo, A., Pirozhkov, A.S., Sugiyama, H., Kiriyama, H., Okada, H., Noda, A., Fadil, H., Iwashita, Y., Morita, A., Nakamura, S., Shirai, T., Tongu, H., Yamazaki, A., Daido, H., Hayashi, Y., Orimo, S., Yamakawa, K., Kato, Y., Matsukado, K., Li, Z., Noda, K., Yamada, S., Uesaka, M. & Beutelpacher, M. (2002). Ion production with a high-power short-pulse laser for application to cancer therapy. Proc. EPAC, pp. 27482750. Paris, France.Google Scholar
Nuckols, J.H., Wood, L., Thiessen, A. & Zimmerman, G.B. (1972). Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nat. 239, 139.CrossRefGoogle Scholar
Patel, P.K., MacKinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser–plasma interactions and their applications. Laser Part. Beams 22, 1924.CrossRefGoogle Scholar
Renard-Le Galloudec, N., Adams, J.D., Korgan, G., Malekos, S, Cowan, T.E., Gaillard, S., Rassuchine, J., Sant, T. & Sentoku, Y. (2006). Developments of laser targets and operations of the target fabrication laboratory. NTF Annual report.Google Scholar
Renard-Le Galloudec, N., Cho, B.I., Osterholz, J. & Ditmire, T. (2008). Controlled reproducible alignment of cone targets and mitigation of preplasma in high intensity laser interactions. Rev. Sci. Inst. 79, 083506.CrossRefGoogle ScholarPubMed
Renard-Le Galloudec, N., d’Humieres, E., Cho, B.I., Osterholz, J., Sentoku, Y. & Ditmire, T. (2009). Guiding, focusing, and collimated transport of hot electrons in a canal in the extended tip of cone targets. Phys. Rev. Lett. 102, 205003.CrossRefGoogle Scholar
Reyntjens, S. & Puers, R. (2002). Focused ion beam induced deposition: Fabrication of three-dimensional microstructures and Young's modulus of the deposited material. J. Micromech. Microeng. 10, 181188.CrossRefGoogle Scholar
Roth, M., Allen, M., Audebert, P., Blazevic, A., Brambrink, E., Cowan, T.E., Fuchs, J., Gauthier, J.-C., Geißel, M., Hegelich, M., Karsch, S., Meyer-ter-Vehn, J., Ruhl, H., Schlegel, T. & Stephens, R.B. (2002 a). The generation of high-quality, intense ion beams by ultra-intense lasers. Plasma Phys. Contr. Fusion 44, B99B108.CrossRefGoogle Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.-C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002 b). Energetic ions generated by laser pulses: A detailed study on target properties. Phys Rev. 5, 061301.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pregoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powel, H. (2001). fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Ruhl, H., Bulanov, S.V., Cowan, T.E., Lisefkina, T.V., Nickles, P., Pegorano, F., Roth, M. & Sandner, W. (2001). Computer simulation of the three-dimensional regime of proton acceleration in the interaction of laser radiation with a thin spherical target. Plasma Phys. Rept. 27, 363371.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Schollmeier, M., Becker, S., Geißel, M., Flippo, K.A., Blazevic, A., Gaillard, S.A., Gautier, D.C., Gruner, F., Harres, K., Kimmel, M., Nurnberg, F., Rambo, P., Schramm, U., Schreiber, J., Schutrumpf, J., Schwarz, J., Tahir, N.A., Atherton, B., Habs, D., Hegelich, B.M. & Roth, M. (2008). Controlled Transport and Focusing of Laser-Accelerated Protons with Miniature Magnetic Devices. Phys. Rev. Lett. 101, 055004.CrossRefGoogle ScholarPubMed
Sentoku, Y., Kemp, A.J., Presura, R., Bakeman, M.S. & Cowan, T.E. (2007). Isochoric heating in heterogeneous solid targets with ultrashort laser pulses. Phys. Plasma 14, 122701.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Ruhl, H., Toyama, Y., Kodama, R. & Cowan, T.E. (2004). Laser light and hot electron micro focusing using a conical target. Phys. Plasma 11, 3083.CrossRefGoogle Scholar
Slatkin, D.N., Spanne, P.O., Dilmanian, F.A., & Sandborg, M. (1992). Microbeam radiation therapy. Med. Phys. 19, 13951400.CrossRefGoogle ScholarPubMed
Snavely, R., Zhang, A.B., Akli, K., Chen, Z., Freeman, R.R., Gu, P., Hatchett, S.P., Hey, D., Hill, J., Key, M.H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A.B., Lasinski, B.F., Lei, A., MacKinnon, A.J., Patel, P., Stephens, R., Tampo, M., Tanaka, K.A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S.C., Yabuuchi, T. & Zheng, J. (2007). Laser generated proton beam focusing and high temperature isochoric heating of solid matter. Phys. Plasmas 14, 092703.CrossRefGoogle Scholar
Spencer, I., Ledingham, K.W.D., Singhal, R.P., McCanny, T., McKenna, P., Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Dangor, A.E., Norreys, P.A., Clarke, R.J., Allott, R.M., Ross, I.N. (2001). Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Instr. Meth. Phys. Res. Sect. B 183, 449458.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M. & Perry, M.D. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasma 1, 1626.CrossRefGoogle Scholar
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26,. 273286.CrossRefGoogle Scholar
Toncian, T., Borghesi, M., Fuchs, J, d’Humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C.A., Pipahl, A., Romagnani, L. & Willi, O. (2006). Ultrafast laser-driven microlens to focus and energy select mega-electron volts protons. Sci. 312, 410.CrossRefGoogle ScholarPubMed
Tümmler, J., Jung, R., Stiel, H., Nickles, P.V. & Sandner, W. (2009). High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy. Opt. Lett. 34, 13781380.CrossRefGoogle ScholarPubMed
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S.H., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542.CrossRefGoogle Scholar
Winterberg, F. (1974). Thermonuclear micro-explosion with intense ion beams. Nat. 251, 4446.CrossRefGoogle Scholar
Winterberg, F. (2004). Laser guided focusing of intense relativistic electron beams for fast ignition. Phys. Plasma 11, 3955.CrossRefGoogle Scholar
Wu, S.Z., Zhou, C.T., He, X.T. & Zhu, S.P. (2009). Generation of strong magnetic fields from laser interaction with two-layer targets. Laser Part. Beams 27, 471474.CrossRefGoogle Scholar
Yogo, A., Sato, K., Nishikino, M., Mori, M., Teshima, T., Numasaki, H., Murakami, M., Demizu, Y., Akagi, S., Nagayama, S., Ogura, K., Sagisaka, A., Orimo, S., Nishiuchi, M., Pirozhkov, A.S., Ikegami, M., Tampo, M., Sakaki, H., Suzuki, M., Daito, I., Oishi, Y., Sugiyama, H., Kiriyama, H., Okada, H, Kanazawa, S., Kondo, S., Shimomura, T, Nakai, Y., Tanoue, M., Sasao, H., Wakai, D., Bolton, P.R. & Daido, H. (2009). Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett. 94, 181502.CrossRefGoogle Scholar
Yu, W., Cao, L., Yu, M.Y., Lei, A.L., Sheng, Z.M., Cai, H.B., Mima, K. & He, X.T. (2010). Focusing of intense laser pulse by a hollow cone. Laser Part. Beams 28, 293.CrossRefGoogle Scholar