Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T06:01:40.839Z Has data issue: false hasContentIssue false

Multimode modelling of the Rayleigh-Taylor instability

Published online by Cambridge University Press:  09 March 2009

J.D. Findlay
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
A.R. Bell
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom

Abstract

This paper presents a comparison of Haan's mode coupling model with two-dimensional hydrocode simulations. In the light of these results, a new saturation criterion is developed that is used in a new, extended mode coupling model. The new extended model accurately follows the mode development to amplitudes 2 to 3 times larger than Haan's model.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dahlburg, J.P. et al. 1993 Phys. Fluids B 5, 571.Google Scholar
Desselberger, et al. 1990 Phys. Rev. Lett. 65, 2997.Google Scholar
Dittrich, T.R. et al. 1994 Phys. Rev. Lett. 73, 2324.Google Scholar
Gardner, J.H. et al. 1991 Phys. Fluids B 3, 1070.Google Scholar
Glendinning, S.G. et al. 1992 Phys. Rev. Lett. 69, 1201.Google Scholar
Haan, S.W. 1989 Phys. Rev. A 39, 5812.Google Scholar
Haan, S.W. 1991 Phys. Fluids B 3, 2349.Google Scholar
Kull, H.J. 1983 Phys. Rev. Lett. 51, 1434.Google Scholar
Layzer, D. 1955 Astrophys. J. 122, 1.Google Scholar
Linden, P.F. & Redondo, J.M. 1991 Phys. Fluids A 3, 1269.Google Scholar
Rayleigh, Lord 1900 Scientific Papers (Dover, New York).Google Scholar
Read, K.I. 1984 Physica D 12, 45.Google Scholar
Remington, B.A. et al. 1992 Phys. Fluids B 4, 967.Google Scholar
Remington, B.A. et al. 1994 Phys. Rev. Lett. 73, 545.Google Scholar
Sakagami, H. & Nishihara, K. 1990 Phys. Rev. Lett. 65, 432.Google Scholar
Tabak, M. et al. 1990 Phys. Fluids B 2, 5.Google Scholar
Takabe, H. et al. 1983 Phys. Fluids 26, 2299.Google Scholar
Taylor, G.I. 1950 Proc. Roy. Soc. A 201, 192.Google Scholar
Town, R.P.J. & Bell, A.R. 1991 Phys. Rev. Lett. 67, 1863.Google Scholar
Van Leer, B. 1977 J. Comput. Phys. 23, 276.Google Scholar
Youngs, D.L. 1982 Numerical Methods for Fluid Dynamics (Academic Press, New York).Google Scholar
Youngs, D.L. 1984 Physica D 12, 32.Google Scholar