Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T22:01:21.776Z Has data issue: false hasContentIssue false

Modeling the ultra-high intensity laser pulse – cone target interaction for ion acceleration at CETAL facility

Published online by Cambridge University Press:  10 July 2017

O. Budrigă*
Affiliation:
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Măgurele, Romania
E. D'Humières
Affiliation:
Université de Bordeaux – CNRS – CEA, CELIA, Talence, France
*
*Address correspondence and reprint requests to: O. Budrigă, Laser Department, National Institute for Laser, Plasma and Radiation Physics, Măgurele, Romania. E-mail: [email protected]

Abstract

We study the interaction of an ultra-high intensity laser pulse with plastic flat-top cone targets with curved walls and cone targets with straight walls. We find the appropriate type, dimensions of the cone target, and the ultra-high intensity laser pulse parameters for which the accelerated ions have the maximum energy and their number is the highest for a lower angular divergence and a better laser absorption. This numerical study will allow one to prepare and optimize first laser-ion acceleration experiments on CETAL using micro-cone targets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Sarri, G., Cecchetti, C.A., Kourakis, I., Hoarty, D., Stevenson, R.M., James, S., Brown, C.D., Hobbs, P., Lockyear, J., Morton, J., Willi, O., Jung, R. & Dieckmann, M. (2010). Progress in proton radiography for diagnosis of ICF-relevant plasmas. Laser Part. Beams 28, 277.CrossRefGoogle Scholar
Budrigă, O., d'Humières, E. & Ticoş, C.M. (2015). Simulations for protons and electrons acceleration with the 1 PW laser pulse from cetal facility. Rom. Rep. Phys. 67, 1271.Google Scholar
Bulanov, S.S., Esarey, E., Schroeder, C.B., Leemans, W.P., Bulanov, S.V., Margarone, D., Korn, G. & Haberer, T. (2015). Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy. Phys. Rev. Spec. Top.: Accl. Beams 18, 061302.Google Scholar
Bulanov, S.V. & Khoroshkov, V.S. (2002). Feasibility of using laser ions accelerators in proton therapy. Plasma Phys. Rep. 28, 453456.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A. S. (2012). Review of laser-driven ion sources and their applications. Rep. Progr. Phys. 75, 056401.CrossRefGoogle ScholarPubMed
Davis, S.P., Capdessus, R., d'Humières, E., Jequier, S., Andriyash, I. & Tikhonchuk, V. (2013). Numerical simulations of energy transfer in counter-streaming plasmas. HEDP 9, 231238.Google Scholar
Flippo, K.A., d'Humières, E., Gaillard, S.A., Rassuchine, J., Gautier, D.C., Schollmeier, M., Nürnberg, F., Kline, J.L., Adams, J., Albright, B., Bakeman, M., Harres, K., Johnson, R.P., Korgan, G., Letzring, S., Malekos, S., Renard-Le Galloudec, N., Sentoku, Y., Shimada, T., Roth, M., Cowan, T.E., Fernández, J.C. & Hegelich, B.M. (2008). Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Phys. Plasmas 15, 056709.CrossRefGoogle Scholar
Fritzler, S., Malka, V., Grillon, G., Rousseau, J.P., Burgy, F., Lefebvre, E., d'Humières, E., McKenna, P. & Ledingham, K.W.D. (2003). Proton beams generated with high-intensity lasers: applications to medical isotope production. Appl. Phys. Lett. 83, 3039.CrossRefGoogle Scholar
Gaillard, S.A., Kluge, T., Flippo, K.A., Bussman, M., Gall, B., Lockard, T., Geissel, M., Offermann, D.T., Schollmeier, M., Sentoku, Y. & Cowan, T.E. (2011). Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets. Phys. Plasmas 18, 056710.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.Google Scholar
Malka, V., Fritzler, S., Lefebvre, E., d'Humières, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.P., Antonetti, A. & Hulin, D. (2004). Practicability of proton therapy using compact laser systems. Med. Phys. 31, 15871592.Google Scholar
Renard-Le Galloudec, N. & d'Humières, E. (2010). New micro-cones targets can efficiently produce higher energy and lower divergence particle beams. Laser Part. Beams 28, 513.CrossRefGoogle Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powel, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Sentoku, Y. & Kemp, A. (2008). Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents. J. Comput. Phys. 227, 68466861.CrossRefGoogle Scholar