Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T23:06:11.711Z Has data issue: false hasContentIssue false

Model equation-of-state for any material in conditions relevant to ICF and to stellar interiors

Published online by Cambridge University Press:  09 March 2009

S. Atzeni
Affiliation:
Associazione Euratom-Enea sulla Fusione, C.R.E. Frascati, C.P. 65-00044 Frascati, Rome (Italy)
A. Caruso
Affiliation:
Associazione Euratom-Enea sulla Fusione, C.R.E. Frascati, C.P. 65-00044 Frascati, Rome (Italy)
V. A. Pais
Affiliation:
Associazione Euratom-Enea sulla Fusione, C.R.E. Frascati, C.P. 65-00044 Frascati, Rome (Italy)

Abstract

A simple model Equation-of-State (EOS) for matter in conditions of interest to Inertial Confinement Fusion (ICF) and to Stellar Interiors is developed. It yields pressures and specific energies in good agreement with accurate EOS tabulations, for matter in the density range 10−6 < ρ < 104 g cm−3 and in the temperature range 0 ≤ T < 100 KeV, with the only exception being the liquid and gaseous phases of the undissociated molecular substances.

This EOS can be used for any element or mixture, requiring, as input data, only the chemical composition (A, Z, and abundancy of each element of the mixture) and three macroscopic constants of the material.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S., Caruso, A., Giupponi, P. & Pais, V. A. 1980 Report CNEN 80.40, Associazione Euratom-CNEN sulla Fusione, Centro di Frascati.Google Scholar
Atzeni, S. 1984, unpublished Average-Atom-Model Calculations.Google Scholar
Atzeni, S. 1985 Reports ENEA/RT/FUS 85/4 and ENEA/RT/FUS 85/9, Frascati, Italy.Google Scholar
Bennet, B. I., Johnson, J. D., Kerley, G. I. & Rood, G. T. 1978 Los Alamos National Laboratory, Report LA-7310.Google Scholar
Birch, J. 1952 J. Geophys Research, 56, 227.CrossRefGoogle Scholar
Brueckner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.CrossRefGoogle Scholar
Christiansen, J. P., Ashby D. E. F. T., Roberts, K. V. 1974 Comp. Phys. Comm. 7, 221.Google Scholar
Clayton, D. D. 1968 Principles of Stellar Evolution and Nucleosynthesis, McGraw-Hill, New York.Google Scholar
Cranfill, C. W. & More, R. M. 1978 Los Alamos Scientific Laboratory, Report LA-7313-MS.Google Scholar
Duderstadt, J. J. & Moses, G. A. 1982 Inertial Confinement Fusion, J. Wiley & Sons, New York.Google Scholar
Fraley, G. S., Linnebur, D. J., Mason, R. J., Morse, R. L. 1974, Phys. Fluids 17, 474.Google Scholar
Landau, L. D. & Lifshitz, E. 1984 Physique Statistique, 3rd Ed., MIR, Moscow, 1st part, Ch. V.Google Scholar
Los Alamos Equation of State and Opacity Group, Theoretical Division 1983 Los Alamos National Laboratory, Report LALP-83–4.Google Scholar
Nuckolls, J., Woods, L., Thiessen, A. & Zimmerman, G. B. 1972 Nature. 239, 139.CrossRefGoogle Scholar
Salpeter, E. E. & Zalposky, H. S. 1967 Phys. Rev. 158, 876.CrossRefGoogle Scholar
Schwarzschild, M. 1958 Structure and Evolution of the Stars Princeton University Press, Princeton, New York.CrossRefGoogle Scholar
Spitzer, L. Jr. 1962 Physics of Fully Ionized Gases J. Wiley, New York.Google Scholar
Zel'Dovich, Ya. B. & Raizer, Yu. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenonena, Academic Press, New York, Vol. 2, Ch. XI.Google Scholar
Zimmerman, G. B. & Kruer, W. L. 1975 Comm. Plasma Phys. Control. Fusion, 2, 51.Google Scholar
Zimmerman, G. B. & More, R. M. 1980 J. Quant. Spectrosc. Radiat. Transfer, 23, 517.CrossRefGoogle Scholar