Published online by Cambridge University Press: 09 October 2020
In this study, an atmospheric pressure dielectric barrier discharge-based argon plasma jet has been modeled using COMSOL Multiphysics, which is based on the finite element method. The fluid dynamics and plasma modules of COMSOL Multiphysics code have been used for the modeling of the plasma jet. The plasma parameters, such as electron density, electron temperature, and electrical potential, have been examined by varying the electrical parameters, that is, supply voltage and supply frequency for both cases of static and with the flow of argon gas. The argon gas flow rate was fixed at 1 l/min. Ring electrode arrangement is subjected to a range of supply frequencies (10–25 kHz) and supply voltages (3.5–6 kV). The experimental results of the ring electrode configuration have been compared with the simulation analysis results. These results help in establishing an optimized operating range of the dielectric barrier discharge-based cold plasma jet in the glow discharge regime without arcing phenomenon. For the applied voltage and supply frequency parameters examined in this work, the discharge was found to be consistently homogeneous and displayed the characteristics of atmospheric pressure glow discharge.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.