Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:23:04.841Z Has data issue: false hasContentIssue false

A method to determine the flux limiter via the motion of the M-band emission region in Au hohlraum

Published online by Cambridge University Press:  25 May 2012

Yiqing Zhao*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Ke Lan
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Peng Song
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Wudi Zheng
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xin Li
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
*
Address correspondence and reprint requests to: Yiqing Zhao, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-14, Beijing 100088, People's Republic of China. E-mail: [email protected]

Abstract

In this paper, the influence of the electron flux limiter fe on hohlraum plasmas is studied by using the two-dimensional code LARED-H, and a method to experimentally determine fe via the motion of the M-band emission region in Au hohlraum is proposed. From our simulations, the limited free streaming flux may dominates the heat conduction in the regions with steep temperature gradient, including the laser deposition region, the flux-heated overcritical region, and the laser channel boundary between the hot laser plasmas and the surrounding radiation ablated plasmas, while these are important X-ray emission regions. Hence, the choosing of fe may influence the wall plasma expansion and the laser spot motion, and further influence the motion of the emission regions. From our study, the motion of the M-band (>1.5 keV) emission region is sensitive to fe when the limited free streaming flux dominates the heat conduction of the wall plasma expansion region, and so it is possible to determine fe via the motion of the M-band emission region. In this work, the model used in our simulations is taken from the wall and laser spot motion experiments done by Huser et al. (2009).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.CrossRefGoogle Scholar
Buresi, E., Coutant, J., Dautray, R., Decroisette, M., Duborgel, B., Guillaneux, P., Launspach, J., Nelson, P., Patou, C., Reisse, J.M. & Watteau, J.P. (1986). Laser program development at CEL-V: Overview of recent experimental results. Laser Part. Beams 4, 531544.CrossRefGoogle Scholar
Cohen, R.S., Spizer, L. & Routly, P.M. (1950). The electrical conductivity of an ionized gas. Phys. Rev. 80, 230238.CrossRefGoogle Scholar
Colombant, D.G., Manheimer, W.M. & Busquet, M. (2005), Test of models for electron transport in laser produced plasmas. Phys. Plasmas 12, 072702072715.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Gupta, N.K. & Godwal, B.K. (2001). Effects of various parameters on numerical simulations of inertial confinement fusion hohlraum and radiation hydrodynamics. Laser Part. Beams 19, 259265.CrossRefGoogle Scholar
Haan, S.W., Lindl, J.D., Callahan, D.A., Clark, D.S., Salmonson, J.D., Hammel, B.A., Atherton, L.J., Cook, R.C., Edwards, M.J., Glenzer, S., Hamza, A.V., Hatchett, S.P., Herrmann, M.C., Hinkel, D.E., Ho, D.D., Huang, H., Jones, O.S., Kline, J., Kyrala, G., Landen, O.L., MacGowan, B.J., Marinak, M.M., Meyerhofer, D.D., Milovich, J.L., Moreno, K.A., Moses, E.I., Munro, D.H., Nikroo, A., Olson, R.E., Peterson, K., Pollaine, S.M., Ralph, J.E., Robey, H.F., Spears, B.K., Springer, P.T., Suter, L.J., Thomas, C.A., Town, R.P., Vesey, R., Weber, S.V., Wilkens, H.L. & Wilson, D.C. (2011). Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18, 051001051047.CrossRefGoogle Scholar
Huo, W.Y., Lan, K., Gu, P.J., Yong, H. & Zeng, Q.H. (2012). Electron heat conduction under non-Maxwellian distribution in hohlraum simulation. Phys. Plasmas 19, 012313012319.CrossRefGoogle Scholar
Huo, W.Y., Ren, G., Lan, K., Li, X., Wu, C., Li, Y., Zhai, C., Qiao, X., Meng, X., Lai, D., Zheng, W., Gu, P., Pei, W., Li, S., Yi, R., Song, T., Jiang, X., Yang, D., Jiang, S. & Ding, Y. (2010). Simulation study of Hohlraum experiments on SGIII-prototype laser facility. Phys. Plasmas 17, 123114123120.CrossRefGoogle Scholar
Huser, G., Courtois, C. & Monteil, M.-C. (2009). Wall and laser spot motion in cylindrical hohlraums. Phys. Plasmas 16, 032703–032702.CrossRefGoogle Scholar
Kline, J.L., Glenzer, S.H., Olson, R.E., Suter, L.J., Widmann, K., Callahan, D.A., Dixit, S.N., Thomas, C.A., Hinkel, D.E., Williams, E.A., Moore, A.S., Celeste, J., Dewald, E., Hsing, W.W., Warrick, A., Atherton, J., Azevedo, S., Beeler, R., Berger, R., Conder, A., Divol, L., Haynam, C.A., Kalantar, D.H., Kauffman, R., Kyrala, G.A., Kilkenny, J., Liebman, J., Le Pape, S., Larson, D., Meezan, N.B., Michel, P., Moody, J., Rosen, M.D., Schneider, M.B., Van Wonterghem, B., Wallace, R.J., Young, B.K., Landen, O. L. & MacGowan, B.J. (2011). Observation of high soft x-ray drive in large-scale hohlraums at the national ignition facility. Phys. Rev. Lett. 106, 085003085006.CrossRefGoogle Scholar
Lan, K., Fill, E. & Meyer-ter-Vehn, J. (2004). Photopumping of XUV lasers by XFEL radiation. Laser Part. Beams 22, 261266.CrossRefGoogle Scholar
Lan, K., Gu, P., Ren, G., Li, X., Wu, C., Huo, W., Lai, D. & He, X.T. (2010). An initial design of hohlraum driven by a shaped laser pulse. Laser Part. Beams 28, 421427.CrossRefGoogle Scholar
Li, Y.S., Huo, W.Y. & Lan, K. (2011). A novel method for determining the M-band fraction in laser-driven gold hohlraums. Phys. Plasmas 18, 022701022705.CrossRefGoogle Scholar
Li, X., Lan, K., Meng, X., He, X., Lai, D. & Feng, T. (2010). Study on Au + U + Au sandwich Hohlraum wall for ignition targets. Laser Part. Beams 28, 7581.CrossRefGoogle Scholar
Lindl, J.D., (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Sunahara, A., Delletrez, J.A., Stoeckl, C., Short, R.W. & Skupsky, S. (2003). Time-dependent electron thermal flux inhibition in direct-drive laser implosions. Phys. Rev. Lett. 91, 095003095006.Google Scholar
Lindl, J.D. & Moses, E.I. (2011). Special topic: Plans for the National Ignition Campaign (NIC) on the National Ignition Facility (NIF): On the threshold of initiating ignition experiments. Phys. Plasmas 18, 050901050902.CrossRefGoogle Scholar
Luciani, J.F., Mora, P. & Virmont, J. (1983). Nonlocal heat transport due to steep temperature gradients. Phys. Rev. Lett. 51, 16641667.CrossRefGoogle Scholar
Malone, R.C., McCrory, R.L. & Morse, R.L. (1975). Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett. 34, 721724.CrossRefGoogle Scholar
Marinak, M.M., Tipton, R.E., Landen, O.L., Murphy, T.J., Amendt, P., Haan, S.W., Hatchett, S.P., Keane, C.J., McEachern, R. & Wallace, R. (1996). Three-dimensional simulations of Nova high growth factor capsule implosion experiments. Phys. Plasmas 3, 20702076.CrossRefGoogle Scholar
Orlov, N.Yu., Denisov, O.B., Rosmej, O.N., Schaefer, D., Nisius, Th., Wilhein, Th., Zhidkov, N., Kunin, A., Suslov, N., Pinegin, A., Vatulin, V. & Zhao, Y. (2011). Theoretical and experimental studies of material radiative properties and their applications to laser and heavy ion inertial fusion. Laser Part. Beams 29, 6980.CrossRefGoogle Scholar
Pei, W.B. (2007). The construction of simulation algorithms for laser fusion. Commun. Comput. Phys. 2, 255270.Google Scholar
Rosen, M.D. & Nuckolls, J.H. (1979). Exploding pusher performance — A theoretical model. Phys. Fluids 22, 13931396.CrossRefGoogle Scholar
Rosen, M.D., Scott, H.A., Hinkel, D.E., Williams, E.A., Callahan, D.A., Town, R.P.J., Divol, L., Michel, P.A., Kruer, W.L., Suter, L.J., London, R.A., Harte, J.A. & Zimmerman, G.B. (2011). The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums Review. High Energy Density Phys. 7, 180190.CrossRefGoogle Scholar
Seifter, A., Kyrala, G.A., Goldman, S.R., Hoffman, N.M., Kline, J.L. & Batha, S.H. (2009). Demonstration of symcaps to measure implosion symmetry in the foot of the NIF scale 0.7 hohlraums. Phys. Plasmas 27, 123127.Google Scholar
Serduke, F.J.D., Minguez, E., Davidson, S.J. & Iglesias, C.A. (2000). WorkOp-IV summary: Lessons from iron opacities. J. Quant. Spectro. & Rad. Trans. 65, 527541.CrossRefGoogle Scholar
Shurtz, G.P., Nicolai, P. & Busquet, M. (2000). A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas 7, 42384249.CrossRefGoogle Scholar
Spitzer, JR.L. & Härm, R. (1953). Transport Phenomena in a Completely Ionized Gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar
Zimmerman, G.B. & Kruer, W.L. (1975). Numerical Simulation of Laser-Initiated Fusion. Comments Plasma Phys. Control. Fusion 2, 51.Google Scholar