Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T20:43:08.418Z Has data issue: false hasContentIssue false

A method for the automatic rezoning of 2-D Lagrangian codes for ICF implosions

Published online by Cambridge University Press:  09 March 2009

S. Atzeni
Affiliation:
Associazione EURATOM-ENEA sulla Fusione, Centra Ricerche Energia Frascati, C.P. 65, 00044 Frascati (Rome), Italy
A. Guerrieri
Affiliation:
Associazione EURATOM-ENEA sulla Fusione, Centra Ricerche Energia Frascati, C.P. 65, 00044 Frascati (Rome), Italy

Abstract

A method for the automatic, discrete rezoning of two-dimensional Lagrangian codes for inertial confinement fusion (ICF) implosions has been developed. The method, which applies to matrix-ordered, quadrilateral zone meshes, allows the preservation of the interface tracking property of the Lagrangian approach. Total mass and momentum are conserved exactly, total energy is approximately conserved, and numerical diffusion is kept to tolerable levels. The mesh generator, the mapping scheme, and the actual implementation in a two-temperature laser fusion code are described. The performance of the method is illustrated by several sample applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. 1986 Comput. Phys. Commun. 43, 107.Google Scholar
Atzeni, S. 1987 Plasma Phys. Controlled Fusion 29, 1535.Google Scholar
Atzeni, S. 1990a Laser Part. Beams 8, 227.Google Scholar
Atzeni, S. 1990b Europhys. Lett. 11, 639.CrossRefGoogle Scholar
Atzeni, S. 1991 Laser Part. Beams 9, 233.Google Scholar
Atzeni, S., Caruso, A. & Pais, V. A. 1986 Laser Part. Beams 4, 393.CrossRefGoogle Scholar
Atzeni, S. & Guerrieri, A. 1989 Europhys. Conf. Abs. 13B, 865.Google Scholar
Brackbill, J. U. & Saltzmann, J. S. 1982 J. Comput. Phys. 46, 342.CrossRefGoogle Scholar
Cloutman, L. D. et al. 1981 Los Alamos National Laboratory Report No. LA-9294-MS.Google Scholar
Craxton, R. S. & McCrory, R. L. 1979 J. Comput. Phys. 33, 432.Google Scholar
Duderstadt, J. J. & Moses, G. A. 1982 Inertial Confinement Fusion (Wiley, New York).Google Scholar
Dukowicz, J. K. 1984 J. Comput. Phys. 54, 411.Google Scholar
Hirt, C. W., Amdsen, A. A. & Cook, J. L. 1974 J. Comput. Phys. 14, 227.CrossRefGoogle Scholar
Kreis, R. I., Thames, F. C. & Assan, H. A. 1986 AIAA J. 24, 1404.CrossRefGoogle Scholar
McCrory, R. L. & Verdon, C. P. 1989 In Inertial Confinement Fusion, edited by Caruso, A. & Sindoni, E. (Editrice Compositori, Bologna), p. 83.Google Scholar
Pert, G. J. 1983 J. Comput. Phys. 49, 1.CrossRefGoogle Scholar
Ramshaw, J. D. 1985 J. Comput. Phys. 59, 193.Google Scholar
Richardson, M. C. et al. 1986 Phys. Rev. Lett. 54, 1656.Google Scholar
Yamanaka, C. et al. 1986 Phys. Rev. Lett. 56, 1575.CrossRefGoogle Scholar
Zimmerman, G. B. 1973 Lawrence Livermore National Laboratory Report No. UCRL–74811Google Scholar