Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T05:27:31.050Z Has data issue: false hasContentIssue false

Measurements and laser-wavelength dependence of mass-ablation rate and ablation pressure in planar layered targets

Published online by Cambridge University Press:  09 March 2009

F. Dahmani
Affiliation:
Haut Commissariat à la Recherche/CDTA, Laboratoire de Fusion Thermonucléaire 2, Bd Frantz Fanon, BP 1017, Alger Gare, Algiers, Algeria
T. Kerdja
Affiliation:
Haut Commissariat à la Recherche/CDTA, Laboratoire de Fusion Thermonucléaire 2, Bd Frantz Fanon, BP 1017, Alger Gare, Algiers, Algeria

Abstract

Layered-targets experiments at 1.06-μm laser light have been performed in order to measure mass-ablation rate ṁ and ablation pressure Pa as a function of absorbed laser flux Ia and laser wavelength λL at irradiances of 1011-4.5 × 1012 W/cm2. The results can be put in the forms ṁ(g/cm2-s) ≈ 4.25 × 105[Ia(W/cm2)/1014]5/9(1 μm/λL)4/9 and Pa(Mbar) ≈ 20[Ia(W/cm2)/1014]7/9(1 μm/λL)2/9, which are consistent with the estimates obtained from a steady-state self-regulated model for plasma heating and with hydrodynamical simulations. Results show also a small lateral energy transport.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boehly, T. et al. 1986 J. Appl. Phys. 60, 3840.CrossRefGoogle Scholar
Boland, B. C. et al. 1968 J. Phys. B 1, 1180.Google Scholar
Christiansen, J. P. et al. 1974 Comput. Phys. Commun. 7, 271.CrossRefGoogle Scholar
Dahmani, F. 1989 Thèse de Magister, Alger (unpublished).Google Scholar
Dixon, R. H. & Elton, R. C. 1977 Phys. Rev. Lett. 38, 1072.CrossRefGoogle Scholar
Eidmann, K. et al. 1976 J. Appl. Phys. 47, 2402.CrossRefGoogle Scholar
Fabbro, R. 1983 Thèse de Doctorat D'état, Preprint FRNC-TH-1414.Google Scholar
Fabbro, R. et al. 1982 Phys. Rev. A 26, 2289.Google Scholar
Fabbro, R. et al. 1985 Phys. Fluids 28, 1463.CrossRefGoogle Scholar
Goldsack, T. J. et al. 1982a Opt. Commun. 42, 55.CrossRefGoogle Scholar
Goldsack, T. J. et al. 1982b Phys. Fluids 25, 1634.CrossRefGoogle Scholar
Gupta, P. D. & Kumbhare, S. R. 1984 J. Appl. Phys. 55, 120.CrossRefGoogle Scholar
Gupta, P. D. et al. 1982 J. Appl. Phys. 53, 2956.CrossRefGoogle Scholar
Irons, F. E. & Peackock, N. J. 1974 J. Phys. B 7, 2084.Google Scholar
Key, M. H. 1981 Rutherford Appleton Laboratory Report No. RL–81–040, Chap. 4.Google Scholar
Key, M. H. et al. 1983 Phys. Fluids 26, 2011.CrossRefGoogle Scholar
Lewis, C. L. S. et al. 1982 J. Phys. D 15, 69.Google Scholar
McLean, E. A. et al. 1977 Appl. Phys. Lett. 31, 9.CrossRefGoogle Scholar
Meyer, B. & Thiell, G. 1984 Phys. Fluids 27, 302.CrossRefGoogle Scholar
Mora, P. 1982 Phys. Fluids 25, 1051.CrossRefGoogle Scholar
Ng, A. et al. 1986 Appl. Phys. Lett. 45, 1046.Google Scholar
Nishimura, H. et al. 1981 Phys. Rev. A 23, 2011.CrossRefGoogle Scholar
Pant, H. et al. 1983 In Proceedings of the 1983 College on Plasma Physics (World Scientific, Trieste, Italy), Vol. 2, edited by McNamara, B., p. 1184.Google Scholar
Puell, H. 1970 Z. Naturforsch. A 25, 1807.Google Scholar
Ripin, B. H. et al. 1980 Phys. Fluids 23, 1012.CrossRefGoogle Scholar
Tallents, G. J. 1980 Plasma Phys. 22, 709.CrossRefGoogle Scholar
Toubhans, I. et al. 1988 L.U.L.I. (Ecole Polytechnique Report, Palaiseau, France), p. 160.Google Scholar
Weastand, R. C. & Astel, M. J. 1980 In CRC Handbook of Chemistry and Physics (Chemical Rubber Co., Florida), p. E-221.Google Scholar
Yaakobi, B. et al. 1981 Opt. Commun. 39, 175.CrossRefGoogle Scholar
Young, F. C. et al. 1977 Appl. Phys. Lett. 30, 45.CrossRefGoogle Scholar