Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T00:52:33.083Z Has data issue: false hasContentIssue false

Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy

Published online by Cambridge University Press:  14 April 2010

W. Gao
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China Department of Optics information Science and Technology, Harbin University of Science and Technology, Harbin 150001, China
Z.W. Lu*
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
S.Y. Wang
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
W.M. He
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
W.L.J. Hasi
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Zhiwei Lu, Institute of Opto-Electronics, Harbin Institute of Technology, P. O. Box 3031. Harbin 150080, China. E-mail: [email protected]

Abstract

A new approach to measure stimulated Brillouin scattering threshold based on the output energy characteristic of stimulated Brillouin scattering optical limiting is proposed. The stimulated Brillouin scattering threshold or its exponential gain, Gth, can be accurately and conveniently determined by the intersection point of linear-fitting lines of the output energy below and above the threshold. The values of Gth in CS2 and FC-72 for different wavelengths and interaction lengths are measured in Continuum's Nd:YAG Q-switched laser and its frequency-doubled system. We show that Gth for transient regime is larger than that for steady state, and increases with the pump wavelength and the interaction length.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Bai, J.H., Shi, J.W., Ouyang, M.Chen, X.D.Gong, W.P., Jing, H.M., Liu, J. & Liu, D.H. (2008). Method for measuring the threshold value of stimulated Brillouin scattering in water. Opt. Lett. 33, 15391541.CrossRefGoogle ScholarPubMed
Bel'dyugin, I.M., Efimkov, V.F., Mikhailov, S.I. & Zubarev, I.G. (2005). Amplification of weak stokes signals in the transient regime of stimulated Brillouin scattering. J. Russian Laser Res. 26, 112.CrossRefGoogle Scholar
Boyd, R.W., Rzazewski, K. & Narum, P. (1990). Noise initiation of Stimulated brillouin scattering. Phys. Rev. A. 42, 55145521.CrossRefGoogle ScholarPubMed
Chiao, R.Y., Townes, C.H. & Stoicheff, B.P. (1964). Stimulated brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592595.CrossRefGoogle Scholar
Damzen, M., Hutchinson, M. & Schroeder, W. (1987). Direct measurement of the acoustic decay times of hypersonic waves generated by SBS. IEEE J. Quantum Electron. 23, 328334.CrossRefGoogle Scholar
Daree, K. & Kaiser, W. (1971). Competition between stimulated Brillouin and Rayleigh scattering in absorbing media. Phys. Rev. Lett. 26, 816819.Google Scholar
Eichler, H.J., Konig, I.R., Piitzold, H.J. & Schwartz, J. (1995). SBS mirrors for XeCl lasers with a broad spectrum. Appl. Phys. B 61, 7380.CrossRefGoogle Scholar
Erokhin, A.I., Kovalev, V.I. & Faizullov, F.S. (1986). Determination of the parameters of a nonlinear of liquids in an acoustic resonance region by the method of nondegenerate four-wave interaction. Sov. J. Quan. Electron. 16, 872877.CrossRefGoogle Scholar
Gaeta, A.L. & Boyd, R.W. (1991). Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. Phys. Rev. A. 44, 32053209.CrossRefGoogle Scholar
Gao, W., Lu, Z.W., He, W. M., Hasi, W.L.J. & Zhang, Z. (2008). Spectrum evolution of spontaneous and pump-depleted stimulated Brillouin scattering in liquid media. Chin. Phys. 17, 37653770.Google Scholar
Gao, W., Lu, Z.W., He, W. M., Dong, Y.K. & Hasi, W.L.J. (2009). Characteristics of amplified spectrum of a weak frequency-detuned signal in a Brillouin amplifier. Laser Part. Beams 27, 465470.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Fu, M.L., Lu, H.H., Gong, S., Lin, D.Y. & He, W.M. (2009 a). Investigation of optical limiting based on the combination of stimulated Brillouin scattering and carbon nanotube/HT-270 suspension. Laser Part. Beams 27, 533536.CrossRefGoogle Scholar
Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Lu, Z.W., Lin, D.Y. & He, W.M. (2009 b). Investigation on effect of medium temperature upon SBS and SBS optical limiting. Laser Part. Beams 27, 733737.CrossRefGoogle Scholar
Kong, H.J., Yoon, J.W., Shin, J.S. & Beak, D.H. (2008). Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors. Appl. Phys. Lett. 92, 021102.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.CrossRefGoogle Scholar
Kovalev, V.I. & Harrison, R.G. (2007). Threshold for stimulated Brillouin scattering in optical fiber. Opt. Express 15, 1762517630.Google Scholar
Kovalev, V.I., Kotova, N.E. & Harrison, R.G. (2009). “Slow Light” in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index. Opt. Exp. 17, 1731717323.CrossRefGoogle ScholarPubMed
Lee, S.K., Lee, D.W. & Kong, H.J. (2005). Stimulated Brillouin scattering by a multimode pump with alarge number of longitudinal modes. J. Korean Phys. Soc. 46, 443447.Google Scholar
Lu, Z.W., Dong, Y.K. & Li, Q. (2007). Slow light in multi-line brillouin gain spectrum. Opt. Exp. 15, 18711877.CrossRefGoogle ScholarPubMed
Lu, Z.W., Gao, W., He, W.M., Zhang, Z. & Hasi, W.L.J. (2009). High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier. Opt. Exp. 17, 1067510680.CrossRefGoogle ScholarPubMed
Maier, M. & Renner, G. (1971). Transient and quasistationary stimulated scattering of light. Opt. Commun. 3, 301304.Google Scholar
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G., Fotiadi, A.A., Megret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., Lu, Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Straber, A., Scheikhobeid, A., Riesbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S. & Zakharov, N.G. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.CrossRefGoogle Scholar
Sen, P. & Sen, K. (1986). Correlation and competition between stimulated Raman and Brillouin scattering processes. Phys. Rev. B. 33, 14271429.CrossRefGoogle ScholarPubMed
Sternklar, S., Glick, Y. & Jackel, S. (1992). Noise limitations of Brillouin two-beam coupling: theory and experiment. J. Opt. Soc. Am. B. 9, 391397.Google Scholar
Wang, Y.L., Lu, Z.W., He, W.M., Zheng, Z.X. & Zhao, Y.H. (2009 a). A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies. Laser Part. Beams 27, 297302.CrossRefGoogle Scholar
Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M. & Lin, D.Y. (2009 b). Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification. Laser Part. Beams 27, 651655.CrossRefGoogle Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.CrossRefGoogle ScholarPubMed