Published online by Cambridge University Press: 20 February 2017
A ns Nd:Yag laser, at intensity of 1010 W/cm2 is employed to generate carbon and aluminum non-equilibrium plasmas at a temperature of about 33 eV accelerating ions at energies of the order of 130 eV per charge state. The ion emission occurs manly along the normal to the target surface and can be detected using ion collectors employed in time-of-flight configuration. The application of magnetic field along the axe of the ion emission permits to focalize the ion emission enhancing the detected ion current. The formation of electron traps, due to the magnetic force lines, drives the ion acceleration improving their kinetic energy. Different applications can make use of these results to increase the flow of charged particles and their energy employing appropriate static magnetic fields, as it will be presented and discussed.