Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T19:53:52.241Z Has data issue: false hasContentIssue false

Low-temperature photoionized plasmas induced in Xe gas using an EUV source driven by nanosecond laser pulses

Published online by Cambridge University Press:  15 December 2016

A. Bartnik*
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
W. Skrzeczanowski
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
P. Wachulak
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
I. Saber
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
H. Fiedorowicz
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
T. Fok
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
Ł. Węgrzyński
Affiliation:
Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
*
Address correspondence and reprint requests to: A. Bartnik, Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland. E-mail: [email protected]

Abstract

In this work, a laser-produced plasma source was used to create xenon (Xe) photoionized plasmas. An extreme ultraviolet (EUV) radiation beam was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. Energies of photons exceeding 100 eV allowed for inner-shell ionization of Xe atoms. Creation of N-shell vacancies resulted in N-shell fluorescence and was followed by multiple ionization. Time-integrated EUV spectra, corresponding to excited states in Xe II–V ions, were recorded. Several emission lines detected in the 39–65 nm wavelength range were not reported earlier. They were not identified due to lack of a corresponding information in published databases. Except spectral measurements in the EUV range, time resolved ultraviolet and visible spectra, originating from Xe II and III ions, were recorded. For spectral lines, corresponding to radiative transitions in Xe II ions, electron temperature was calculated based on a Boltzmann plot method. Based on this method the temperature was measured for different time delays according to the driving EUV pulses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aragón, C. & Aguilera, J.A. (2008). Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochim. Acta B 63, 893916.Google Scholar
Baraket, M., Walton, S.G., Lock, E.H., Robinson, J.T. & Perkins, F.K. (2010). The functionalization of graphene using electron-beam generated plasmas. Appl. Phys. Lett. 96, 231501.Google Scholar
Bartnik, A., Fiedorowicz, H., Jarocki, R., Kostecki, J., Szczurek, M. & Wachulak, P.W. (2011). Laser-plasma EUV source dedicated for surface processing of polymers. Nucl. Instrum. Methods Phys. Res. A 647, 125131.Google Scholar
Bartnik, A., Fiedorowicz, H., Rakowski, R., Szczurek, M., Bijkerk, F., Bruijn, R. & Fledderus, H. (2001). Soft x-ray emission from a double stream gas puff target irradiated by a nanosecond laser pulse. Proc. SPIE 4424 ECLIM 2000 (M. Kalal, K. Rohlena, M. Sinor, Eds), Prague, Czech Republic, pp. 406.Google Scholar
Bartnik, A., Lisowski, W., Sobczak, J., Wachulak, P., Budner, B., Korczyc, B. & Fiedorowicz, H. (2012). Simultaneous treatment of polymer surface by EUV radiation and ionized nitrogen. Appl. Phys. A 109, 3943.CrossRefGoogle Scholar
Dutuit, O., Carrasco, N., Thissen, R., Vuitton, V., Alcaraz, C., Pernot, P., Balucani, N., Casavecchia, P., Canosa, A., Le Picard, S., Loison, J.C., Herman, Z., Zabka, J., Ascenzi, D., Tosi, P., Franceschi, P., Price, S.D. & Lavvas, P. (2013). Critical review of N, N+, N+ 2, N++, and N++ 2 main production processes and reactions of relevance to Titan's atmosphere. Astrophys. J. Suppl. Ser. 204, 20.CrossRefGoogle Scholar
Falcon, R.E., Rochau, G.A., Bailey, J.E., Ellis, J.L., Carlson, A.L., Gomez, T.A., Montgomery, M.H., Winget, D.E., Chen, E.Y., Gomez, M.R. & Nash, T.J. (2013). An experimental platform for creating white dwarf photospheres in the laboratory. High Energy Density Phys. 9, 8290.CrossRefGoogle Scholar
Falcon, R.E., Rochau, G.A., Bailey, J.E., Ellis, J.L., Montgomery, M.H., Winget, D.E., Gomez, M.R. & Leeper, R.J. (2010). Creating white dwarf photospheres in the laboratory. AIP Conf. Proc. 1273, 436.Google Scholar
Fiedorowicz, H., Bartnik, A., Jarocki, R., Rakowski, R. & Szczurek, M. (2000). Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Appl. Phys. B: Lasers Opt. 70, 305308.CrossRefGoogle Scholar
Fritzsche, S., Grum-Grzhimailo, A.N., Gryzlova, E.V. & Kabachnik, N.M. (2011). Sequential two-photon double ionization of the 4d shell in xenon. J. Phys. B: At. Mol. Opt. Phys. 44, 175602.CrossRefGoogle Scholar
Harilal, S.S. (2004). Spatial and temporal evolution of argon sparks. Appl. Opt. 43, 39313937.Google Scholar
Hong, Y.C., Uhm, H.S., Chun, B.J., Lee, S.K., Hwang, S.K. & Kim, D. Su. (2006). Microwave plasma torch abatement of NF3 and SF6 . Phys. Plasmas 13, 033508.Google Scholar
Huebner, W.F., Keady, J.J. & Lyon, S.P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 195, 1294.Google Scholar
Imanaka, H. & Smith, M.A. (2009). EUV photochemical production of unsaturated hydrocarbons: Implications to EUV photochemistry in Titan and Jovian planets. J. Phys. Chem. A 113, 1118711194.CrossRefGoogle ScholarPubMed
Kołos, R. (1995). A novel source of transient species for matrix isolation studies. Chem. Phys. Lett. 247, 289292.Google Scholar
Korotkov, R.Y., Goff, T. & Ricou, P. (2007). Fluorination of polymethylmethacrylate with SF6 and hexafluoropropylene using dielectric barrier discharge system at atmospheric pressure. Surf. Coat. Technol. 201, 72077215.CrossRefGoogle Scholar
Lallement, L., Gosse, C., Cardinaud, C., Peignon-Fernandez, M.C. & Rhallabi, A. (2010). Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication. J. Vacuum Sci. Technol. A 28, 277.Google Scholar
Liptak, R.W., Devetter, B., Thomas, J.H., Kortshagen, U. & Campbell, S.A. (2009). SF6 plasma etching of silicon nanocrystals. Nanotechnology 20, 035603.CrossRefGoogle ScholarPubMed
Matzen, M.K., Sweeney, M.A., Adams, R.G., Asay, J.R., Bailey, J.E., Bennett, G.R., Bliss, D.E., Bloomquist, D.D., Brunner, T.A., Campbell, R.B., Chandler, G.A., Coverdale, C.A., Cuneo, M.E., Davis, J.P., Deeney, C., Desjarlais, M.P., Donovan, G.L., Garasi, C.J., Haill, T.A., Hall, C.A., Hanson, D.L., Hurst, M.J., Jones, B., Knudson, M.D., Leeper, R.J., Lemke, R.W., Mazarakis, M.G., McDaniel, D.H., Mehlhorn, T.A., Nash, T.J., Olson, C.L., Porter, J.L., Rambo, P.K., Rosenthal, S.E., Rochau, G.A., Ruggles, L.E., Ruiz, C.L., Sanford, T.W.L., Seamen, J.F., Sinars, D.B., Slutz, S.A., Smith, I.C., Struve, K.W., Stygar, W.A., Vesey, R.A., Weinbrecht, E.A., Wenger, D.F. & Yu, E.P. (2005). Pulsed-power-driven high energy density physics and inertial confinement fusion research. Phys. Plasmas 12, 055503.CrossRefGoogle Scholar
Ogura, K., Yamada, H., Sato, Y. & Okamoto, Y. (1997). excitation temperature in high-power nitrogen microwave-induced plasma at atmospheric pressure. Appl. Spectrosc. 51, 14961499.Google Scholar
Pavlov, A.V. (2014). Photochemistry of ions at d-region altitudes of the ionosphere: A review. Surv. Geophys. 35, 259334.Google Scholar
Peignon, M.C., Cardinaud, Ch. & Turban, G. (1991). Etching processes of tungsten in SF6–O2 radio-frequency plasmas. J. Appl. Phys. 70, 3314.Google Scholar
Peterson, W.K., Brain, D.A., Mitchell, D.L., Bailey, S.M. & Chamberlin, P.C. (2013). Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth. J. Geophys. Res. A 118, 73387347.Google Scholar
Peterson, W.K., Woods, T.N., Fontenla, J.M., Richards, P.G., Chamberlin, P.C., Solomon, S.C., Tobiska, W.K. & Warren, H.P. (2012). Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations. J. Geophys. Res.: Space Phys. 117, A05320.Google Scholar
Pilling, S., Andrade, D.P.P., do Nascimento, E.M., Marinho, R.R.T., Boechat-Roberty, H.M., de Coutinho, L.H., de Souza, G.G.B., de Castilho, R.B., Cavasso-Filho, R.L., Lago, A.F. & de Brito, A.N. (2011). Photostability of gas- and solid-phase biomolecules within dense molecular clouds due to soft X-rays Mon. Not. R. Astron. Soc. 411, 22142222.CrossRefGoogle Scholar
Plank, N.O.V., Blauw, M.A., van der Drift, E.W.J.M. & Cheung, R. (2003). The etching of silicon carbide in inductively coupled SF6/O2 plasma. J. Phys. D 36, 482487.Google Scholar
Saloman, E.B. (2004). Energy levels and observed spectral lines of xenon, XeI through XeLIV. J. Phys. Chem. Ref. Data 33, 765921.Google Scholar
Shim, K-H., Kil, Y-H., Yang, H.D., Park, B.K., Yang, J-H., Kang, S., Jeong, T.S. & Kimor, T.S. (2012). Characteristics of germanium dry etching using inductively coupled SF6 plasma. Mater. Sci. Semicond. Process. 15, 364370.Google Scholar