Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T04:08:04.089Z Has data issue: false hasContentIssue false

Low velocity ion slowing down in a de-mixing binary ionic mixture

Published online by Cambridge University Press:  15 March 2011

C. Deutsch*
Affiliation:
Université Paris-Sud, LPGP (UMR-CNRS 8578), Orsay, France
D. Leger
Affiliation:
Université Valenciennes-Hainaut Cambresis, Lab., Monthouy, France
B. Tashev
Affiliation:
Kazakh National University, Department of Physics, Almaty, Kazakhstan
*
Address correspondence and reprint requests to: C. Deutsch, Université Paris-Sud, LPGP (UMR-CNRS 8578)Bât. 210, F-91405 Orsay, France. E-mail: [email protected]

Abstract

We consider ion projectile slowing down at low velocity Vp < Vthe, target thermal electron velocity, in a strongly coupled and de-mixing H-He ionic mixture. It is investigated in terms of quasi-static and critical charge-charge structure factors. Non-polarizable as well as polarizable partially degenerate electron backgrounds are given attention. The low velocity ion slowing down turns negative in the presence of long wavelength and low frequency hydromodes, signaling a critical de-mixing. This process documents an energy transfer from target ion plasma to the incoming ion projectile.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arista, N.R. & Brandt, W. (1981). Energy-loss and straggling of charged-particles in plasmas of all degeneracies. Phys. Rev. A 23, 18981905.Google Scholar
De Gennes, P.G. & Friedel, J. (1958). Anomalie de resistivité dans certains metaux magnétiques (Resistivity anomalies in magnetic metals). J. Phys. Chem. Solids 4, 7177.Google Scholar
Deutsch, C. & Leger, D. (1993). Electron transport with ion demixing. Contrib. Plasma Phys. 33, 409420.CrossRefGoogle Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. Paris 11, 1111.Google Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., DellaNegra, S.,Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion stopping in dense plasmas. A standard model approach. Nucl. Instrum. Meth. A 278, 3843.CrossRefGoogle Scholar
Fisher, M.E. & Langer, J.S. (1968). Resistive anomalies at magnetic critical points. Phys. Rev. Lett. 20, 665668.CrossRefGoogle Scholar
Fromy, P., Tashev, B. & Deutsch, C. (2010). Very low velocity ion slowing down in binary ionic mixtures: Charge-and mass-asymmetry effects. Phys. Rev. Special Topics Accelerators and Beams 13, 1013C28.Google Scholar
Fried, B.D. & Conte, S.D. (1961). The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Gericke, D.O., Schlanges, M. & Kraeft, W.D. (1996). Stopping power of a quantum plasma T-matrix approximation and dynamical screening. Phys. Lett. A 222, 241245.Google Scholar
Gericke, D.O. and Schlanges, M. (1999). Beam-plasma coupling effect on the stopping power of dense plasmas. Phys. Rev. E 60, 904909.CrossRefGoogle ScholarPubMed
Hubbard, W.B. (1966). Studies in stellar evolution. V. Transport coefficients of degenerate stellar matter. Astrophys. J. 146, 858869.Google Scholar
Leger, D. & Deutsch, C. (1988). Critical demixing in strongly coupled ionic mixtures . I. Weak electron-ion coupling and stability requirements. Phys. Rev. A 37, 49164929.CrossRefGoogle ScholarPubMed
Leger, D. & Deutsch, C. (1988). Critical demixing in strongly coupled ionic mixtures. II. Hydrodynamic correlation functions. Phys. Rev. A 37, 49304942.CrossRefGoogle ScholarPubMed
Leger, D. & Deutsch, C. (1992). Linear and electronic transport in strongly coupled ionic H-He mixtures. Phys. Fluids B 4, 31623184.CrossRefGoogle Scholar
Lindhard, J. (1954). Electron dielectric function. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 28, 1.Google Scholar
Pines, D. (1964). Elementary Excitations in Solids. New York: Benjamin.Google Scholar
Lorenzen, W., Holst, B. & Redmer, R. (2009). Demixing of hydrogen and helium at Megabars pressure. Phys. Rev. Lett. 102, 115701/4.CrossRefGoogle Scholar
Stevenson, D.J. (1975). The thermodynamics and phase separation of dense fully ionized H-He fluid mixtures. Phys. Rev. B 12, 39994007.Google Scholar
Stevenson, D.J. & Salpeter, E.E. (1977). Phase-diagram and transport properties for H-He fluid planets. Astrophys. J. Suppl. 35, 221235.CrossRefGoogle Scholar
Tashev, B., Baimbetov, F., Deutsch, C. & Fromy, P. (2008). Low ion velocity slowing down in dense binary ionic mixtures. Phys. Plasmas 15, 10270.CrossRefGoogle Scholar
Vorberger, J., Tamblyn, I., Militzer, B. & Bonev, S.A. (2007). H-He mixtures in the interior of giant planets. Phys. Rev. B 75, 024206.Google Scholar