Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T18:54:00.603Z Has data issue: false hasContentIssue false

Linear response of partially ionized, dense plasmas

Published online by Cambridge University Press:  09 March 2009

T. Błeński
Affiliation:
Institute de Génie Atomique, Département de Physique, Ecole Polytechnique Fédérate de Lausanne, 1015 Lausanne, Switzerland
B. Cichocki
Affiliation:
Institute de Génie Atomique, Département de Physique, Ecole Polytechnique Fédérate de Lausanne, 1015 Lausanne, Switzerland

Abstract

We propose a new formalism to electronic polarizability of dense, partially ionized plasmas. This formalism is based upon the density functional theory for the electronic equilibrium, the random phase approximation for the density response of electrons, and the cluster expansion in the averaging over ionic configurations. The first term in the final cluster expansion for the imaginary part of electron polarizability corresponds to the Lindhard dielectric function formula. The second term contains the electronic states of the average atom. The additional effects that result from this theory are: channel mixing (screening), “inverse Bremstrahlung” corrections, and free-bound electronic transitions. Our approach allows the plasma (collective) and atomic physics phenomena to be treated in the frame of one formalism. The theory can be applied for stopping power and opacity calculations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bethe, H.A. & Jakiv, R. 1986 Intermediate Quantum Mechanics (Benjamin/Cummings, Menlo Park, CA).Google Scholar
Bleński, T. & Cichocki, B. 1990 Phys. Rev. A 41, 6973.Google Scholar
Bleński;, T. & Ligou, J. 1989 in: Laser Interaction with Matter, Verlarde, G.Minguez, E., & Perlado, J. M. eds. (World Scientific, Singapore), p. 380.Google Scholar
Bleński, T., Ligou, J. & Morel, S. 1991 Fusion Tech. 20, 813.CrossRefGoogle Scholar
Brueckner, K.A. & Senbetu, L. 1982 Phys. Rev. B 25, 4377.CrossRefGoogle Scholar
Cichocki, B. & Felderhof, B.U. 1988 J. Statistical Phys, 51, 57.CrossRefGoogle Scholar
Crowley, B.J.B. 1990 Phys. Rev. A 41, 2179.CrossRefGoogle Scholar
Deutsch, C. et al. 1988 Fusion Tech. 13, 362.CrossRefGoogle Scholar
Dharma-Wardana, M.W.C. & Perrot, F. 1982 Phys. Rev. A 26, 2096.CrossRefGoogle Scholar
Fetter, A.L. & Walecka, J.D. 1971 Quantum Theory of Many-Body Systems (McGraw-Hill, New York).Google Scholar
Garbet, X. et al. 1987 J. Appl. Phys. 61, 907.CrossRefGoogle Scholar
Gouedard, C. & Deutsch, C. 1978 J. Math. Phys. 19, 32.CrossRefGoogle Scholar
Grimaldi, F. et al. 1985 Phys. Rev. A 32, 1063.CrossRefGoogle Scholar
Hansen, J.P. & McDonald, I.A. 1986 Theory of Simple Liquids (Academic Press, London), p. 235.Google Scholar
Maynard, G. & Deutsch, C. 1982 Phys. Rev. A 26, 665.CrossRefGoogle Scholar
Mermin, N.D. 1965 Phys. Rev. A 137, 1441.CrossRefGoogle Scholar
Nardi, E. 1978 Phys. Fluids 21, 574.CrossRefGoogle Scholar
Peter, T. & Kärcher, B. 1991 J. Appl. Phys. 169, 3842.Google Scholar
Peter, T. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 1998.CrossRefGoogle Scholar
Rozsnyai, B.F. 1972 Phys. Rev. A 5, 1137.CrossRefGoogle Scholar
Stewart, J. & Pyatt, K. 1966 Astrophys. J. 144, 1203.CrossRefGoogle Scholar
Vashista, P. & Kohn, W. 1983 in: Theory of the Inhomogeneous Electron Gas, Lundquist, S. & March, N.M. eds. (Plenum, New York).Google Scholar
Zangwill, A. & Soven, P. 1980 Phys. Rev. A 21, 1561.CrossRefGoogle Scholar