Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:39:18.208Z Has data issue: false hasContentIssue false

Laser-pumped and laser-cooled atomic clocks for space applications

Published online by Cambridge University Press:  09 March 2009

Walter F. Buell
Affiliation:
Electronics Technology Center, the Aerospace Corporation, M2–253, P.O. Box 92957, Los Angeles, CA 90009–2957, USA

Abstract

Highly stable atomic frequency standards are of increasing importance for a variety of space applications, ranging from communication to navigation and time transfer to tests of fundamental science. We present a discussion of the improvements possible with laser pumping of vapor cell clocks, including applying coherent population trapping (CPT) techniques. We also present our progress toward a cold atom clock based on magneto-optically trapped atoms for space applications.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arimondo, E. 1996 Prog. Opt. 35, 257.CrossRefGoogle Scholar
Blair, B.E. 1974 NBS Monograph 140, Washington, DC.Google Scholar
Brandt, S. et al. 1997 Phys. Rev. A 56, 1063.CrossRefGoogle Scholar
Brossel, J. et al. 1952 J. Phys. Radium 13, 668.CrossRefGoogle Scholar
Camparo, J.C. 1998. J. Opt. Soc. Am. B15, 1177.CrossRefGoogle Scholar
Camparo, J.C. & Buell, W.F. 1997 In Proc. IEEE Freq. Control Symp., Parker, T.E., ed. (IEEE Piscataway, NJ) p. 253.Google Scholar
Coffer, J. & Camparo, J.C. 1998 In Proc. IEEE Int. Freq. Control Symp., Vig, J., ed. (IEEE, Piscataway, NJ) p. 52.Google Scholar
Camparo, J.C. & Frueholz, R.P. 1986 J. Appl. Phys. 59, 3313.CrossRefGoogle Scholar
Camparo, J.C. et al. 1997 Int. J. Sat. Comm. 15, 135.3.0.CO;2-O>CrossRefGoogle Scholar
Chan, Y. 1991 In Proc. 23rd Int. PTTI Meeting, Sydnor, R.L., ed. (NASA, Washington, DC) p. 237.Google Scholar
Chan, Y. & Bhaskar, N.D. 1995 J. Opt. Soc. Am. B12, 2347.CrossRefGoogle Scholar
Essen, L. & Parry, J.V.L. 1955 Nature 176, 280.CrossRefGoogle Scholar
Hashimoto, M. & Ohtsu, M. 1987 IEEE J. Quant. Electron. QE-23, 446.CrossRefGoogle Scholar
Hemmer, P.R. et al. 1983 Opt. Lett. 8, 440.CrossRefGoogle Scholar
Hemmer, P.R. et al. 1986 J. Opt. Soc. Am. B3, 219.CrossRefGoogle Scholar
Hemmer, P.R. et al. 1993 J. Opt. Soc. Am. B10, 1326.CrossRefGoogle Scholar
Kastler, A. 1950 J. Phys. Radium 11, 225.CrossRefGoogle Scholar
Kohel, J. et al. 1998 Abstract OP.76 submitted to DAMOP98 meeting (Santa Fe, CA).Google Scholar
Lea, S.N. et al. 1994 Phys. Scripta T51, 78.CrossRefGoogle Scholar
Lee, K.I. et al. 1996 Opt. Lett. 21, 1177.CrossRefGoogle Scholar
Lemonde, P. et al. 1997 In Proc. IEEE Freq. Control Symp., p. 213.Google Scholar
Lewis, L.L. & Feldman, M. 1981 In Proc. 35th Ann. Freq. Control Symp., Parker, T.E., ed. (IEEE, Piscataway, NJ) p. 612.Google Scholar
Lounis, J. et al. 1993 C. R. Acad. Sci. (Paris), Series II, 316, 739.Google Scholar
Lu, Z.T. et al. 1996 Phys. Rev. Lett. 77, 3331.CrossRefGoogle Scholar
Lukin, M.D. et al. 1997 Phys. Rev. Lett. 79, 2959.CrossRefGoogle Scholar
Maleki, L. 1997 In Proceedings of the Workshop in the Scientific Applications of Clocks in Space, Nov. 7–8, 1996, JPL Publication 97–15.Google Scholar
Metcalf, H.J. & Van Der Straten, P. 1994 Phys. Rep. 244, 203.CrossRefGoogle Scholar
Meystre, P. & Sargent, M., III 1991 Elements of Quantum Optics, 2nd ed. (Springer-Verlag, Berlin).CrossRefGoogle Scholar
Mileti, G. et al. 1996 In Proc. 1996 Int. Freq. Contr. Symp., Yamanouchi, K. & Vig, J., eds. (IEEE, Piscataway, NJ) p. 1066.Google Scholar
Mileti, G. et al. 1998 IEEE J. Quant. Electron. QE-34, 233.CrossRefGoogle Scholar
Ohshima, S.-I. et al. 1989 IEEE Trans. Instrum. Meas. 38, 533.CrossRefGoogle Scholar
Parkinson, B.W. et al. 1996 Global Positioning System: Theory and Applications (AIAA, Washington, D.C.).CrossRefGoogle Scholar
Polzik, E.S. et al. 1992 Appl. Phys. B 55, 279.CrossRefGoogle Scholar
Rabi, I.I. 1982 Am. J. Phys. 50, 972.CrossRefGoogle Scholar
Ramsey, N.F. 1950 Phys. Rev. 78, 695.CrossRefGoogle Scholar
Ramsey, N.F. 1956 Molecular Beams (Oxford, Clarendon Press).Google Scholar
Rigden, J.S. 1987 Rabi: Scientist and Citizen (Basic Books, New York).Google Scholar
Rolston, S.L. & Phillips, W.D. 1991 Proc. IEEE 79, 944.CrossRefGoogle Scholar
Scully, M.O. & Zubairy, M.S. 1997 Quantum Optics (Cambridge Univ. Press, Cambridge, UK).CrossRefGoogle Scholar
Söding, J. et al. 1997 Phys. Rev. Lett. 78, 1420.CrossRefGoogle Scholar
Spallicci, A. et al. 1997 Class. Quantum Grav. 14, 2971.CrossRefGoogle Scholar
Sullivan, D.B. et al. 1990 NIST Technical Note 1337, Washington, D.C.Google Scholar
Vanier, J. & Audoin, C. 1989 The Quantum Physics of Atomic Frequency Standards (Adam Hilger, Bristol).CrossRefGoogle Scholar
Vanier, J. & Bernier, L.-G. 1981 IEEE Trans. Instrum. Meas. Sci. IM-30, 227.Google Scholar
Zacharias, J.R. et al. 1955 Proc. lnst. Radio Eng. 43, 364.Google Scholar
Zibrov, A.S. et al. 1995 In Proc. 5th Symp. Freq. Stand. Metr., Bergquist, J.C., ed. (World Scientific, Singapore). p. 490.Google Scholar