Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T20:54:55.752Z Has data issue: false hasContentIssue false

Laser-produced plasma-wall interaction

Published online by Cambridge University Press:  08 December 2009

O. Renner*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
R. Liska
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic
F.B. Rosmej
Affiliation:
Université Pierre et Marie Curie UPMC, LULI, UMR 7606, Paris, France École Polytechnique, LULI, PAPD, Palaiseau, France
*
Address correspondence and reprint requests to: O. Renner, Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic. E-mail: [email protected]

Abstract

Jets of laser–generated plasma represent a flexible and well-defined model environment for investigation of plasma interactions with solid surfaces (walls). The pilot experiments carried out on the iodine laser system (5–200 J, 0.44 µm, 0.25–0.3 ns, <1×1016 W/cm2) at the PALS Research Centre in Prague are reported. Modification of macroscopic characteristics of the Al plasma jets produced at laser-irradiated double-foil Al/Mg targets is studied by high-resolution, high-dispersion X-ray spectroscopy. The spatially variable, complex satellite structure observed in emission spectra of the Al Lyα group proves a formation of rather cold dense plasma at the laser-exploded Al foil, an occurrence of the hot plasma between both foils and subsequent thermalization, deceleration and trapping of Al ions in the colliding plasma close to the Mg foil surface. The spectra interpretation based on the collisional-radiative code is complemented by 1D and 2D hydrodynamic modeling of the plasma expansion and interaction of counter-propagating Al/Mg plasmas. The obtained results demonstrate a potential of high resolution X-ray diagnostics in investigation of the laser-produced plasma–wall interactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adámek, P., Renner, O., Drska, L., Rosmej, F.B. & Wyart, J.F. (2006). Genetic algorithms in spectroscopic diagnostics of hot dense plasmas. Laser Part. Beams 24, 511518.CrossRefGoogle Scholar
Badziak, J., Kasperczuk, A., Parys, P., Pisarczyk, T., Rosiński, M., Ryc, L., WoŁowski, J., Jablonski, S., Suchanska, R., Krousky, E., Láska, L., Mašek, K., Pfeifer, M., Ullschmied, J. & Dareshwar, L.J. (2007). Production of high–current heavy ion jets at the short–wavelength subnanosecond laser–solid interaction. Appl. Phys. Lett. 91, 081502.CrossRefGoogle Scholar
Beigman, I.L., Pirogovskiy, P.Ya., Presnyakov, L.P., Shevelko, A.P. & Uskov, D.B. (1989). Interaction of a laser-produced plasma with a solid surface: Soft X-ray spectroscopy of high-Z ions in a cool dense plasma. J. Phys. B. 22, 24932502.CrossRefGoogle Scholar
Berger, R.L., Albritton, J.R., Randall, C.J., Williams, E.A., Kruer, W.L., Langdon, A.B. & Hanna, C.J. (1991). Stopping and thermalization of interpenetrating plasma streams. Phys. Fluids B 3, 312.CrossRefGoogle Scholar
Chung, H.-K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis of all elements. High Energy Density Phys. 1, 312.Google Scholar
Djaoui, A., & Rose, S.J. (1992). Calculation of the time-dependent excitation and ionization in laser-produced plasma. J. Phys. B 25, 27452762.Google Scholar
Dittrich, T.R., Haan, S.W., Marinak, M.M., Pollaine, S.M., Hinkel, D.E., Munro, D.H., Verdon, C.P., Strobel, G.L., McEachern, R., Cook, R.C., Roberts, C.C., Wilson, D.C., Bradley, P.A., Foreman, L.R. & Varnum, W.S. (1999). Review of indirect-drive ignition design options for the National Ignition Facility. Phys. Plasmas 6, 21642170.CrossRefGoogle Scholar
Dunne, M. (2006). A high–power laser fusion facility for Europe. Nature Physics 2, 25.CrossRefGoogle Scholar
Evans, R.G. (2006). Modelling short pulse, high intensity laser plasma interactions. High Energy Density Phys. 2, 3547.CrossRefGoogle Scholar
Gauthier, E., Dumas, S., Matheus, J., Missirlian, M., Corre, Y., Nicolas, L., Yala, P., Coad, P., Andrew, P. & Cox, S. (2005). Thermal behaviour of redeposited layer under high heat flux exposure. J. Nucl. Mat. 337–339, 960964.CrossRefGoogle Scholar
Gibbon, P. & Förster, E. (1996). Short-pulse laser-plasma interactions. Plasma Phys. Contr. Fusion 38, 769793.CrossRefGoogle Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge, UK: Cambridge Univ. Press.CrossRefGoogle Scholar
Hauer, A.A., Delamater, N.D. & Koenig, Z.M. (1991). High-resolution X-ray spectroscopic diagnostics of laser-heated and ICF plasmas. Laser Part. Beams 9, 348.CrossRefGoogle Scholar
Ikeda, K. (2007). Progress in the ITER physics basis. Nucl. Fusion 47, S1S404.Google Scholar
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P. & Ullschmied, J. (2001). The Prague Asterix Laser System PALS. Phys. Plasmas 8, 24952501.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007). Interferometric investigations of influence of target irradiation on the parameters of laser-produced plasma jets. Laser Part. Beams 25, 425433.CrossRefGoogle Scholar
Kucharik, M., Limpouch, J. & Liska, R. (2006). Laser plasma simulations by Arbitrary Lagrangian Eulerian method. J. Phys. IV France 133, 167169.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Liska, R., Limpouch, J., Kucharik, M. & Renner, O. (2008). Selected laser plasma simulations by ALE method. J. Phys. 112, 022009.Google Scholar
Mazing, M.A., Pirogovskiy, P.Ya., Shevelko, A.P. & Presnyakov, L.P. (1985). Interaction of a laser-produced plasma with a solid surface. Phys. Rev. A 32, 36953698.CrossRefGoogle ScholarPubMed
Morice, O., Casanova, M., Loiseau, P., Teychenné, D. & Rousseaux, C. (2008). Nanosecond laser-plasma interaction studies in the context of the LIL facility. J. Phys. 112, 022037.Google Scholar
Pisarczyk, T., Kasperczuk, A., Krousky, E., Masek, K., Miklaszewski, R., Nicolai, Ph., Pfeifer, M., Pisarczyk, P., Rohlena, K., Stenc, K., Skala, J., Tikhonchuk, V. & Ullschmied, J. (2007). The PALS iodine laser–driven jets. Plasma Phys. Contr. Fusion 49, B611B619.CrossRefGoogle Scholar
Rancu, O., Renaudin, P., Chenais-Popovics, C., Kawagashi, H., Gauthier, J.-C., Dirksmöller, M., Missalla, T., Uschmann, I., Förster, E., Larroche, O., Peyrusse, O., Renner, O., Krouský, E., Pépin, H. & Shepard, T. (1995). Experimental evidence of interpenetration and high ion temperature in colliding plasmas. Phys. Rev. Lett. 75, 38453848.Google Scholar
Remington, B.A., Drake, R.P. & Ryutov, D.D. (2006). Experimental astrophysics with high power lasers and Z pinches. Rev. Mod. Phys. 78, 755807.CrossRefGoogle Scholar
Renner, O., Missalla, T., Sondhauss, P., Krousky, E., Förster, E., Chenais–Popovics, C. & Rancu, O. (1997). High-luminosity, high-resolution X-ray spectroscopy of laser-produced plasma by vertical-geometry Johann spectrometer. Rev. Sci. Instr. 68, 23932403.CrossRefGoogle Scholar
Renner, O., Sondhauss, P., Peyrusse, O., Krousky, E., Ramis, R., Eidmann, K. & Förster, E. (1999). High-resolution measurements of X-ray emission from dense quasi-1D plasma. Laser Part. Beams 17, 364375.CrossRefGoogle Scholar
Renner, O., Rosmej, F.B., Krouský, E., Sondhauss, P., Kalachnikov, M.P., Nickles, P.V., Uschmann, I. & Förster, E. (2001). Aluminum Lyα group formation at high-intensity, high-energy laser-matter interaction. J. Quant. Spectr. Rad. Trans. 71, 623634.CrossRefGoogle Scholar
Renner, O., Uschmann, I. & Förster, E. (2004). Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas. Laser Part. Beams 22, 2528.CrossRefGoogle Scholar
Renner, O., Adámek, P., Angelo, P., Dalimier, E., Förster, E., Krouský, E., Rosmej, F.B. & Schott, R. (2006). Spectral line decomposition and frequency shifts in Al Heα group emission from laser produced plasmas. J. Quant. Spectr. Rad. Trans. 99, 523536.CrossRefGoogle Scholar
Renner, O., Adámek, P., Dalimier, E., Delserieys, A., Krousky, E., Limpouch, J., Liska, R., Riley, D., Rosmej, F.B. & Schott, R. (2007). Spectroscopic characterization of ion collisions and trapping at laser irradiated double-foil targets. Hi. Ener. Density Phys. 3, 211217.CrossRefGoogle Scholar
Rosmej, F.B. (1997). Hot electron X-ray diagnostics, J. Phys. B. 30, L819L828.Google Scholar
Rosmej, F.B. (2001). A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas. Europhys. Lett. 55, 472478.CrossRefGoogle Scholar
Rosmej, F.B., Lisitsa, V.S., Schott, R., Dalimier, E., Riley, D., Delserieys, A., Renner, O. & Krousky, E. (2006). Charge exchange driven X-ray emission from highly ionized plasma jets. Europhys. Lett. 76, 815821.CrossRefGoogle Scholar
Rosmej, F.B. & Lee, R.W. (2007). Hollow ion emission driven by pulsed intense X-ray fields. Europhys. Lett. 77, 24001.CrossRefGoogle Scholar
Shevelko, A.P., Knight, L.V., Peatross, J.B. & Wang, Q. (2001). Structure and intensity of X-ray radiation in a laser plasma-wall interaction. Proc. SPIE 4505, 171178.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (2002). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola, N.Y.: Dover Publications. 762770.Google Scholar