Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T03:30:31.512Z Has data issue: false hasContentIssue false

The laser-matter interaction meets the high energy physics: Laser-plasma accelerators and bright X/γ-ray sources

Published online by Cambridge University Press:  30 August 2005

D. GIULIETTI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Sezione INFN di Pisa, Italy Dipartimento di Fisica dell'Università di Pisa, Italy
M. GALIMBERTI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Sezione INFN di Pisa, Italy
A. GIULIETTI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Sezione INFN di Pisa, Italy
L.A. GIZZI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Sezione INFN di Pisa, Italy
L. LABATE
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Sezione INFN di Pisa, Italy
P. TOMASSINI
Affiliation:
Intense Laser Irradiation Laboratory, IPCF-CNR, Pisa, Sezione INFN di Pisa, Italy

Abstract

Laser matter interaction in the regime of super-intense and ultra-short laser pulses is discovering common interests and goals for plasma and elementary particles physics. Among them, the electron laser wakefield acceleration and the X/γ tunable sources, based on the Thomson scattering (TS) of optical photons on accelerated electrons, represent the most challenging applications. The activity of the Intense Laser Irradiation Laboratory in this field will be presented.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Alesini, D., Bertolucci, S., Biagini, M.E., Biscari, C., Boni, R., Boscolo, M., Castellano, M., Clozza, A., Di Pirro, G., Drago, A., Esposito, A., Ferrario, M., Fusco, V., Gallo, A., Ghigo, A., Guiducci, S., Incurvati, M., Ligi, C., Marcellini, F., Migliorati, M., Milardi, C., Mostacci, A., Palumbo, L., Pellegrino, L., Preger, M., Raimondi, P., Ricci, R., Sanelli, C., Serio, M., Sgamma, F., Spataro, B., Stecchi, A., Stella, A., Tazzioli, F., Vaccarezza, C., Vescovi, M., Vicario, C., Zobov, M., Alessandria, F., Bacci, A., Bonifacio, R., Boscolo, I., Broggi, S.Cialdi, C., DeMartinis, D., Giove, C., Maroli, V., Petrillo, N., Piovella, R., Pozzoli, F., Romè, M., Serafini, L., Bottigli, U., Golosio, B., Oliva, P., Poggiu, A., Stumbo, S., Barbini, A., Baldeschi, W., Cecchetti, C.A., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Koester, P., Labate, L., Laville, S., Rossi, A., &Tomassini, P. (2004). Design Study for Advanced Acceleration Experiments and Monochromatic X-ray Production @ SPARC, 9th European Particle Accelerator Conference, Lucerne, July, 2004.
Balakirev, V.A., Karas, I.V., Karas, V.I., Levchenko, V.D. & Bornatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.Google Scholar
Breschi, E., Borghesi, M., Campbell, D.H., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, L., Schiavi, A. & Willi, O. (2004). Spectral and angular characterisation of laser produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.Google Scholar
Bulanov, S.V., Naumova, N., Pegoraro, F. & Sakai, J. (1998). Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257.Google Scholar
Dorchies, F., Amiranoff, F., Baton, S., Bernard, D., Cros, B., Descamps, D., Jacquet, F., Malka, V., Marquès, J.R., Matthieussent, G., Miné, Ph., Modena, A., Mora, P., Morillo, J., Najmudin, Z. & Solodov, A. (1999). Electron acceleration in laser wakefield experiment at Ecole Polytechnique. Laser Part. Beams 17, 299305.Google Scholar
Faure, J., Gilnec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Geddes, C.G.R., Toth, C.S., van Tilborg, J., Esarey, E., Schroeder C.B., Bruhwller, D., Nieter, C., Cary, J., &Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Giulietti, D. (2004). The PLASMONX project and its applications in Medical Physics. The Congress of Società Italiana di Fisica, Brescia, 2004. Bologna: Societs Italiana di Fisica.
Giulietti, D., Galimberti, M., Giulietti, A., Gizzi, L.A., Numico, R., Tomassini, P., Malka, V., Fritzler, S., Pittman, M., Ta Phouc, K. & Pukhov, A. (2002). Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Phys. Plasmas 9, 3655.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O.N., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H., Hoelss, M., Scheid, W., Wang, J.M., Ho, Y.K., Osman, F. & Castillo, R. (2000). Principle of high accuracy for the nonlinear theory of the acceleration of electrons in a vacuum by lasers at relativistic intensities. Laser Part. Beams 18, 135144.Google Scholar
Katsouleas, T. (2004). Electrons hang ten on laser wake. Nature 431, 515516.Google Scholar
Labate, L., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Tomassini, P. & Di Cocco, G. (2002). A laser-plasma source for CCD calibration in the soft X-ray range. Nucl. Instr. Meth. A 495, 148.Google Scholar
Leemans, W.P., Clayton, C.E., Marsh, K.A. & Joshi, C. (1991). Stimulated compton scattering from preformed underdense plasmas. Phys. Rev. Lett. 67, 14341437.Google Scholar
Malka, V. (1998). Utilisation du spectromètre à électrons à 200 MeV, Note LULI-LOA, August.
Malka, V. & Fritzler, S. (2004). Electrons and protons beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Malka, V. (2002). Charged particle source produced by laser–plasma interaction in the relativistic regime. Laser Part. Beams 20, 217221.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535538.Google Scholar
Nakajima, K. (2000). Particle acceleration by ultraintense laser interactions with beams and plasmas. Laser Part. Beams 18, 519528.Google Scholar
Reitsma, A.J.W. & Jaroszynki, D.A. (2004). Coupling of longitudinal and transverse motion of accelerated laser pulses in the relativistic regime. Laser Part. Beams 22, 407413.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Comm. 56, 219221.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett 43, 267.Google Scholar
Teychenné, D. (1994). Accélération de particules dans un plasma par une onde de sillage provoquée par une brève impulsion laser de forte intensité. Doctorial Thesis, Paris, France: University of Paris VI.
Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A. & Labate, L. (2002). IPCF Report 2002. http://ilil.ipcf.cnr.it.
Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A. & Labate, L. (2003a). Spectroscopy of laser-plasma accelerated electrons: A novel concept based on Thomson scattering. Phys. Plasmas 10, 917.Google Scholar
Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Labate, L. & Pegoraro, F. (2003b). Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking. Phys. Rev. 6, 121301.Google Scholar
Tomassini, P., Galimberti, M., Giulietti, A., Giulietti, D., Gizzi, L.A., Labate, L. & Pegoraro, F. (2004). Laser wake field acceleration with controlled self-injection by sharp density transition. Laser Part. Beams 22, 423429.Google Scholar