Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T03:40:00.543Z Has data issue: false hasContentIssue false

A laser-driven droplet source for plasma physics applications

Published online by Cambridge University Press:  11 September 2020

Bastian Aurand*
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
Esin Aktan
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
Kerstin Maria Schwind
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
Rajendra Prasad
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
Mirela Cerchez
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
Toma Toncian
Affiliation:
Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328Dresden, Germany
Oswald Willi
Affiliation:
Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225Düsseldorf, Germany
*
Author for correspondence: B. Aurand, Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany. E-mail: [email protected]

Abstract

In this paper, we report on the acceleration of protons and oxygen ions from tens of micrometer large water droplets by a high-intensity laser in the range of 1020 W/cm2. Proton energies of up to 6 MeV were obtained from a hybrid acceleration regime between classical Coulomb explosion and shocks. Besides the known thermal energy spectrum, a collective acceleration of oxygen ions of different charge states is observed. 3D PIC simulations and analytical models are employed to support the experiential findings and reveal the potential for further applications and studies.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, AA, Platonov, KYu, Okada, T and Toraya, S (2003) Nonlinear absorption of a short intense laser pulse in a nonuniform plasma. Physics of Plasmas 10, 220226.CrossRefGoogle Scholar
Andreev, AA, Okada, T, Platonov, KYu and Toraya, S (2004) Parameters of a fast ion jet generated by an intense ultrashort laser pulse on an inhomogeneous plasma foil. Laser and Particle Beams 22, 431438.CrossRefGoogle Scholar
Antici, P, Boella, E, Chen, SN, Andrews, DS, Barberio, M, Boker, J, Cardelli, F, Feugeas, JL, Glesser, M, Nicolai, P, Romagnani, L, Sciscio, M, Starodubtsev, M, Willi, O, Kieffer, JC, Tikhonchuk, V, Pepin, H, Silva, LO, Humieres, E and Fuchs, J (2017) Acceleration of collimated 45 MeV protons by collisionless shocks driven in low-density, large-scale gradient plasmas by a 120 W/cm2, 1 μm laser. Nature Scientific Reports 7, 16463.CrossRefGoogle Scholar
Arber, TD, Bennett, K, Brady, CS, Lawrence-Douglas, A, Ramsay, MG, Sircombe, NJ, Gillies, P, Evans, RG, Schmitz, H, Bell, AR and Ridgers, CP (2017) Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion 57, 113001.10.1088/0741-3335/57/11/113001CrossRefGoogle Scholar
Aurand, B, Kuschel, S, Jaeckel, O, Roedel, C, Zhao, HY, Herzer, S, Paz, AE, Bierbach, J, Polz, J, Elkin, B, Paulus, GG, Karmakar, A, Gibbon, P, Kuehl, T and Kaluza, MC (2013) Radiation pressure-assisted acceleration of ions using multi-component foils in high-intensity laser-matter interactions. New Journal of Physics 15, 033031.CrossRefGoogle Scholar
Aurand, B, Senje, L, Svensson, K, Hansson, M, Higginson, A, Gonoskovc, A, Marklund, M, Persson, A, Lundh, O, Neely, D, McKenna, P and Wahlstrom, CG (2016) Manipulation of the spatial distribution of laser-accelerated proton beams by varying the laser intensity distribution. Physics of Plasmas 23, 023113.CrossRefGoogle Scholar
Aurand, B, Grieser, S, Toncian, T, Aktan, E, Cerchez, M, Lessmann, L, Prasad, R, Khoukaz, A and Willi, O (2019) A multihertz, kiloelectronvolt pulsed proton source from a laser irradiated continuous hydrogen cluster target. Physics of Plasmas 26, 073102.CrossRefGoogle Scholar
Aurand, B, Schwind, KM, Toncian, T, Aktan, E, Cerchez, M, Lessmann, L, Mannweiler, C, Prasad, R, Khoukaz, A and Willi, O (2020) Study of the parameter dependence of laser-accelerated protons from a hydrogen cluster source. New Journal of Physics 22, 033025.CrossRefGoogle Scholar
Brandstätter, M, Gambino, N and Abhari, RS (2018) Temporally and spatially resolved ion dynamics of droplet-based laser-produced tin plasmas in lateral expansion direction. Journal of Applied Physics 123, 043308.CrossRefGoogle Scholar
Burza, M, Gonoskov, A, Genoud, G, Persson, A, Svensson, K, Quinn, M, McKenna, P, Marklund, M and Wahlstrom, CG (2011) Hollow microspheres as target. New Journal of Physics 23, 013030.10.1088/1367-2630/13/1/013030CrossRefGoogle Scholar
Clark, EL, Krushelnick, K, Zepf, M, Beg, FN, Tatarakis, M, Machacek, A, Santala, MI, Watts, II, Norreys, PA and Dangor, AE (2000) Energetic heavy-Ion and proton generation from ultraintense laser-plasma interactions with solids. Physical Review Letters 85, 16541661.10.1103/PhysRevLett.85.1654CrossRefGoogle ScholarPubMed
Ditmire, T, Gumbrell, ET, Smith, RA, Mountford, L and Hutchinson, MH (1996) Supersonic ionization wave driven by radiation transport in a short-pulse laser-produced plasma. Physical Review Letters 77, 498501.10.1103/PhysRevLett.77.498CrossRefGoogle Scholar
Ditmire, T, Zweiback, J, Yanovsky, VP, Cowan, TE, Hays, G and Wharton, KB (1999) Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489492.10.1038/19037CrossRefGoogle Scholar
Esirkepov, TZh, Bulanov, SV, Nishihara, K, Tajima, T, Pegoraro, F, Khoroshkov, VS, Mima, K, Daido, H, Kato, Y, Kitagawa, Y, Nagai, K and Sakabe, S (2002) Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Physical Review Letters 89, 175003.10.1103/PhysRevLett.89.175003CrossRefGoogle ScholarPubMed
Grieser, S, Aurand, B, Aktan, E, Bonaventura, D, Buescher, M, Cerchez, M, Engin, I, Leßmann, L, Mannweiler, C, Prasad, R, Willi, O and Khoukaz, A (2019) Nm-sized cryogenic hydrogen clusters for a laser-driven proton source. Review of Scientific Instruments 90, 043301.CrossRefGoogle ScholarPubMed
Gwynne, D, Kar, S, Doria, D, Ahmed, H, Cerchez, M, Fernandez, J, Gray, RJ, Green, JS, Hanton, F, MacLellan, DA, McKenna, P, Najmudin, Z, Neely, D, Ruiz, JA, Schiavi, A, Streeter, M, Swantusch, M, Willi, O, Zepf, M and Borghesi, M (2014) Modified Thomson spectrometer design for high energy, multi-species ion sources. Review of Scientific Instruments 85, 033304.CrossRefGoogle ScholarPubMed
Henig, A, Steinke, S, Schnurer, M, Sokollik, T, Horlein, R, Kiefer, D, Jung, D, Schreiber, J, Hegelich, BM, Yan, XQ, Meyer-ter-Vehn, J, Tajima, T, Nickles, PV, Sandner, W and Habs, D (2009) Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Physical Review Letters 103, 245003.CrossRefGoogle ScholarPubMed
Hey, DS, Key, MH, Mackinnon, AJ, MacPhee, AG, Patel, PK, Freeman, RR, Van Woerkom, LD and Castaneda, CM (2008) Use of GafChromic film to diagnose laser generated proton beams. Review of Scientific Instruments 79, 053501.10.1063/1.2901603CrossRefGoogle ScholarPubMed
Mora, P (2003) Plasma expansion into a vacuum. Physical Review Letters 90, 185002.10.1103/PhysRevLett.90.185002CrossRefGoogle ScholarPubMed
Plateau, JAF (1873) Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Paris: Gauthier-Villars.Google Scholar
Prasad, YBSR, Barnwal, S, Naik, PA, Chakera, JA and Gupta, PD (2011) Chirped pulse interferometry for time resolved density and velocity measurements of laser produced plasmas. Journal of Applied Physics 110, 023305.10.1063/1.3610792CrossRefGoogle Scholar
Prasad, R, Borghesi, M, Abicht, F, Nickles, PV, Stiel, H, Schnurer, M and Ter-Avetisyan, S (2012) Ethanol (C2H5OH) spray of sub-micron droplets for laser driven negative ion source. Review of Scientific Instruments 83, 083301.10.1063/1.4747002CrossRefGoogle ScholarPubMed
Quinn, MN, Yuan, XH, Lin, XX, Carroll, DC, Tresca, O, Gray, RJ, Coury, M, Li, C, Li, YT, Brenner, CM, Robinson, APL, Neely, D, Zielbauer, B, Aurand, B, Fils, J, Kuehl, T and McKenna, P (2011) Refluxing of fast electrons in solid targets irradiated by intense, picosecond laser pulses. Plasma Physics and Controlled Fusion 53, 025007.10.1088/0741-3335/53/2/025007CrossRefGoogle Scholar
Ramakrishna, B, Murakami, M, Borghesi, M, Ehrentraut, L, Nickles, PV, Schnuerer, M, Steinke, S, Psikal, J, Tikhonchuk, V and Ter-Avetisyan, S (2010) Laser-driven quasimonoenergetic proton burst from water spray target. Physics of Plasmas 17, 083113.10.1063/1.3479832CrossRefGoogle Scholar
Rayleigh, J (1878) On the instability of jets. Proceedings of the London Mathematical Society 10, 413.10.1112/plms/s1-10.1.4CrossRefGoogle Scholar
Schnuerer, M, Ter-Avetisyan, S, Busch, S, Risse, E, Kalachnikov, MP, Sandner, W and Nickles, P (2005) Ion acceleration with ultrafast laser driven water droplets. Laser and Particle Beams 23, 337343.Google Scholar
Schwind, KM, Aktan, E, Cerchez, M, Prasad, R, Willi, O and Aurand, B (2019 a) A high-repetition rate droplet-source for plasma physics applications. Nuclear Instruments and Methods in Physics Research Section A 928, 6569.10.1016/j.nima.2019.03.004CrossRefGoogle Scholar
Schwind, KM, Aktan, E, Prasad, R, Cerchez, M, Eversheim, D, Willi, O and Aurand, B (2019 b) An online beam profiler for laser-accelerated protons. Review of Scientific Instruments 90, 053307.10.1063/1.5086248CrossRefGoogle ScholarPubMed
Schwoerer, H, Pfotenhauer, S, Jackel, O, Amthor, KU, Liesfeld, B, Ziegler, W, Sauerbrey, R, Ledingham, KW and Esirkepov, T (2006) Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445453.10.1038/nature04492CrossRefGoogle ScholarPubMed
Snavely, RA, Key, MH, Hatchett, SP, Cowan, TE, Roth, M, Phillips, TW, Stoyer, MA, Henry, EA, Sangster, TC, Singh, MS, Wilks, SC, MacKinnon, A, Offenberger, A, Pennington, DM, Yasuike, K, Langdon, AB, Lasinski, BF, Johnson, J, Perry, MD and Campbell, EM (2000) Intense high-energy proton beams from Petawatt-laser irradiation of solids. Physical Review Letters 85, 29452953.CrossRefGoogle ScholarPubMed
Sokollik, T, Schnurer, M, Steinke, S, Nickles, PV, Sandner, W, Amin, M, Toncian, T, Willi, O and Andreev, AA (2009) Directional laser-driven ion acceleration from microspheres. Physical Review Letters 103, 135003.10.1103/PhysRevLett.103.135003CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S, Schnurer, M, Nickles, PV, Kalashnikov, M, Risse, E, Sokollik, T, Sandner, W, Andreev, A and Tikhonchuk, V (2006) Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. Physical Review Letters 96, 145006.CrossRefGoogle ScholarPubMed
Tikhonchuk, VT, Andreev, AA, Bochkarev, SG and Bychenkov, VYu (2005) Ion acceleration in short-laser-pulse interaction with solid foils. Plasma Physics and Controlled Fusion 47, B869B877.10.1088/0741-3335/47/12B/S69CrossRefGoogle Scholar
Tresca, O, Carroll, DC, Yuan, XH, Aurand, B, Bagnoud, V, Brenner, CM, Coury, M, Fils, J, Gray, RJ, Kuehl, T, Li, C, Li, YT, Lin, XX, Quinn, MN, Evans, RG, Zielbauer, B, Roth, M, Neely, D and McKenna, P (2011) Controlling the properties of ultraintense laser-proton sources using transverse refluxing of hot electrons in shaped mass-limited targets. Plasma Physics and Controlled Fusion 53, 105008.CrossRefGoogle Scholar
Weibel, ES (1959) Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Physical Review Letters 2, 8384.CrossRefGoogle Scholar
Wilks, SC, Langdon, AB, Cowan, TE, Roth, M, Singh, M, Hatchett, S, Key, MH, Pennington, D, MacKinnon, A and Snavely, RA (2001) Energetic proton generation in ultra-intense laser-solid interactions. Physics of Plasmas 8, 542549.CrossRefGoogle Scholar
Willi, O, Behmke, M, Gezici, L, Hidding, B, Jung, R, Koenigstein, T, Pipahl, A, Osterholz, J, Pretzler, G, Pukhov, A, Toncian, M, Toncian, T, Heyer, M, Jaeckel, O, Kuebel, M, Paulus, G, Roedel, C, Schlenvoigt, HP, Ziegler, W, Buescher, M, Feyt, A, Lehrach, A, Ohm, H, Oswald, G, Raab, N, Ruzzo, M, Seltmann, M and Zhang, Q (2009) Particle and x-ray generation by irradiation of gaseous and solid targets with a 100 TW laser pulse. Plasma Physics and Controlled Fusion 51, 124049.CrossRefGoogle Scholar
Yan, XQ, Lin, C, Sheng, ZM, Guo, ZY, Liu, BC, Lu, YR, Fang, JX and Chen, JE (2009) Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Physical Review Letters 13, 135003.Google Scholar
Yin, L, Albright, BJ, Hegelich, BM and Fernandez, JC (2006) GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner. Laser and Particle Beams 24, 291298.10.1017/S0263034606060459CrossRefGoogle Scholar