Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T06:33:15.576Z Has data issue: false hasContentIssue false

A laser plasma interaction model for the conditions of stimulated Brillouin backscattering model experiments

Published online by Cambridge University Press:  09 March 2009

J. Handke
Affiliation:
Experimentalphysik V, Ruhr-Universität, D-4630 Bochum, FRG
S. A. H. Rizvi
Affiliation:
Experimentalphysik V, Ruhr-Universität, D-4630 Bochum, FRG
B. Kronast
Affiliation:
Experimentalphysik V, Ruhr-Universität, D-4630 Bochum, FRG

Abstract

A model of laser interaction with a preformed target plasma is developed for the conditions of so called stimulated Brillouin backscattering (SBS) model experiments and its applicability is demonstrated by various tests. Most of the features can be understood from analytical approximations. A consequence of irradiation by a narrow beam, typical of model experiments, is the stabilization of electron temperature at low values. Another consequence equally unexpected is the SBS threshold dependence on beam radius and the particular power law dependence on plasma density. On the basis of this model the wide scatter of the SBS threshold between model experiments can be explained. It is also demonstrated that, for the conditions of these model experiments, classical Spitzer heat conduction suffices.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bickerton, R. J. 1973 Nuclear Fusion 13, 457.CrossRefGoogle Scholar
Brysk, H. 1975 J. Phys. A 8, 1260.Google Scholar
Burnett, N. H., Baldis, H. A., Enright, G. D., Richardson, M. C. & Corkum, P. B. 1977 J. Appl. Phys. 48, 3727.Google Scholar
Clayton, C. E., Joshi, C., Yasuda, A. & Chen, F. F. 1981 Phys. Fluids 24, 2312.CrossRefGoogle Scholar
Dawson, J. M. & Oberman, C. 1963 Phys. fluids 6, 394.Google Scholar
Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids 17, 778.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1975 Phys. Fluids 18, 1002.Google Scholar
Gellert, B. 1982 Report 82-N3–109, SFB Plasmaphysik, Ruhr-Universität Bochum.Google Scholar
Handke, J., Rizvi, S. A. H. & Kronast, B. 1981 Appl. Phys. 25, 109.CrossRefGoogle Scholar
Handke, J. 1982 Report 82-N3–108, SFB Plasmaphysik, Ruhr-Universität Bochum.Google Scholar
Herbst, M. J., Clayton, C. E. & Chen, F. F. 1979 Phys. Rev. Lett. 43, 1591.Google Scholar
Herbst, M. J., Clayton, C. E. & Chen, F. F. 1980a J. Appl. Phys. 51, 4080.CrossRefGoogle Scholar
Herbst, M. J., Clayton, C. E. & Chen, F. F. 1980a J. Appl. Phys. 51, 4080.CrossRefGoogle Scholar
Herbst, M. J., Clayton, C. E., Peebles, W. A.Chen, F. F. 1980 Phys. Fluids 23, 1319.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas, Wiley, New York.Google Scholar
Johnston, T. W. & Dawson, J. M. 1973 Phys. Fluids 16, 722.Google Scholar
Massey, R., Berggren, K. & Pietrzyk, Z. A. 1976 Phys. Rev. Lett. 36, 963.Google Scholar
Massey, R. S.Pietrzyk, Z. A. & Scudder, D. W. 1978 Phys. Fluids 21, 396.Google Scholar
Neufeld, C. R. 1980 J. Appl. Phys. 51, 237.Google Scholar
Ng, A., Pitt, L., Salzmann, D. & Offenberger, A. A. 1979 Phys. Rev. Lett. 42, 307.CrossRefGoogle Scholar
Offenberger, A. A., Cervenan, M. R., Yam, A. M. & Pasternak, A. W. 1976 J. Appl. Phys. 47, 1451.CrossRefGoogle Scholar
Offenberger, A. A., Ng, A. & Cervenan, M. R. 1978 Can. J. Phys. 56, 381.CrossRefGoogle Scholar
Pietrzyk, Z. A. & Massey, R. 1977 J. Appl. Phys. 48, 1867.CrossRefGoogle Scholar
Pietrzyk, Z. A. & Carlstrom, T. N. 1979 Appl. Phys. Lett. 35, 681.CrossRefGoogle Scholar
Rizvi, S. A. H. 1983 Ph.D. Thesis Ruhr-Universität Bochum.Google Scholar
Spitzer, Jr., 1961 Physics of Fully Ionzed Gases, Wiley-Interscience Publishers, New York.Google Scholar
Spitzer, L. Jr. & Härm, R. 1952 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Walsh, C. J., Meyer, J. & Hilko, B. 1981 Appl. Phys. Lett. 38, 82.CrossRefGoogle Scholar