Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:05:18.842Z Has data issue: false hasContentIssue false

Laser irradiation of thin films: Effect of energy transformation

Published online by Cambridge University Press:  10 September 2013

Mikhail E. Povarnitsyn*
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
Nikolay E. Andreev
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
Pavel R. Levashov
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
Konstantin V. Khishchenko
Affiliation:
Joint Institute for High Temperatures RAS, Moscow, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
Dmitry A. Kim
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, Russia
Vladimir G. Novikov
Affiliation:
Keldysh Institute of Applied Mathematics, Moscow, Russia
Olga N. Rosmej
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
*
Address correspondence and reprint requests to: Mikhail E. Povarnitsyn, Joint Institute for High Temperatures RAS, Izhorskaya 13 Bldg 2, Moscow 125412, Russia. E-mail: [email protected]

Abstract

The irradiation of thin films by intensive subpicosecond laser pulses with nanosecond prepulse is accompanied by a number of various physical processes. The laser beam transmissions through the film as well as the re-emission flux on both sides of the film plasma have been evaluated by simulation for Al and CH2 materials. It has been demonstrated that the thickness of the film can be chosen to cut off the long nanosecond prepulse whereas the main pulse is transmitted through the plasma. Thus, thin films can be useful for the laser contrast improvement in experiments with different targets.

Nevertheless, the laser energy transformation into the soft X-ray radiation on the back side of the shielding film plasma can reach up to 7% of the incident intensity for the Al film and result in strong preheating of the target. At the same time the re-emission flux produced by a CH2 film is an order lower than that in the case of Al film. The shielding of an Ag bulk target by Al and CH2 films is simulated and discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apfelbaum, E.M. (2011). Calculation of electronic transport coefficients of Ag and Au plasma. Phys. Rev. E 84, 066403.CrossRefGoogle ScholarPubMed
Bagnoud, V., Aurand, B., Blazevic, A., Borneis, S., Bruske, C., Ecker, B., Eisenbarth, U., Fils, J., Frank, A., Gaul, E., Goette, S., Haefner, C., Hahn, T., Harres, K., Heuck, H.-M., Hochhaus, D., Hoffmann, D., Javorkova, D., Kluge, H.-J., Kuehl, T., Kunzer, S., Kreutz, M., Merz-Mantwill, T., Neumayer, P., Onkels, E., Reemts, D., Rosmej, O., Roth, M., Stoehlker, T., Tauschwitz, A., Zielbauer, B., Zimmer, D. & Witte, K. (2010). Commissioning and early experiments of the PHELIX facility. Appl. Phys. B: Lasers Opt. 100, 137150.CrossRefGoogle Scholar
Carroll, D.C., Tresca, O., Prasad, R., Romagnani, L., Foster, P.S., Gallegos, P., Ter-Avetisyan, S., Green, J.S., Streeter, M.J.V., Dover, N., Palmer, C.A.J., Brenner, C.M., Cameron, F.H., Quinn, K.E., Schreiber, J., Robinson, A.P.L., Baeva, T., Quinn, M.N., Yuan, X.H., Najmudin, Z., Zepf, M., Neely, D., Borghesi, M. & McKenna, P. (2010). Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses. New J. Phys. 12, 045020.CrossRefGoogle Scholar
Ditmire, T., Bless, S., Dyer, G., Edens, A., Grigsby, W., Hays, G., Madison, K., Maltsev, A., Colvin, J., Edwards, M.J., Lee, R.W., Patel, P., Price, D., Remington, B.A., Sheppherd, R., Wootton, A., Zweiback, J., Liang, E. & Kielty, K.A. (2004). Overview of future directions in high energy-density and high-field science using ultra-intense lasers. Radiat. Phys. Chem. 70, 535552.CrossRefGoogle Scholar
Doumy, G., Quéré, F., Gobert, O., Perdrix, M., Martin, P., Audebert, P., Gauthier, J.C., Geindre, J.-P. & Wittmann, T. (2004). Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402.CrossRefGoogle ScholarPubMed
Du, D., Liu, X., Korn, G., Squier, J. & Mourou, G. (1994). Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 30713073.CrossRefGoogle Scholar
Fromy, P., Deutsch, C. & Maynard, G. (1996). Thomas–Fermi-like and average atom models for dense and hot matter. Phys. Plasmas 3, 714.CrossRefGoogle Scholar
Khishchenko, K.V. (2008). Equation of state and phase diagram of tin at high pressures. J. Phys.: Conf. Ser. 121, 022025.Google Scholar
Khishchenko, K.V., Tkachenko, S.I., Levashov, P.R., Lomonosov, I.V. & Vorob'ev, V.S. (2002). Metastable states of liquid tungsten under subsecond wire explosion. Int. J. Thermophys. 23, 1359.Google Scholar
Kim, D.A., Novikov, V.G., Dolgoleva, G.V., Koshelev, K.N. & Solomyannaya, A.D. (2012). EUV-source modeling with account of detailed level kinetics included in-line into gasdynamic calculations. Technical Report 51. URL: http://library.keldysh.ru/preprint.asp?id=2012-51Google Scholar
Kitagawa, Y., Fujita, H., Kodama, R., Yoshida, H., Matsuo, S., Jitsuno, T., Kawasaki, T., Kitamura, H., Kanabe, T., Sakabe, S., Shigemori, K., Miyanaga, N. & Izawa, Y. (2004). Prepulse-free petawatt laser for a fast ignitor. IEEE J. Quan. Electron. 40, 281293.CrossRefGoogle Scholar
Levashov, P.R. & Khishchenko, K.V. (2007). Tabular multiphase equations of state for metals and their applications. AIP Conf. Proc. 955, 5962.Google Scholar
Lin, Z., Zhigilei, L.V. & Celli, V. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133.CrossRefGoogle Scholar
McKenna, P., Lindau, F., Lundh, O., Neely, D., Persson, A. & Wahlström, C.-G. (2006). High-intensity laser-driven proton acceleration: influence of pulse contrast. Philosoph. Trans. Royal Soci. A 364, 711723.CrossRefGoogle ScholarPubMed
Nikiforov, A.F., Novikov, V.G. & Uvarov, V.B. (2005). Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State. Basel: Birkhäusen Verlag.CrossRefGoogle Scholar
Novikov, V.G., Koshelev, K.N. & Solomyannaya, A.D. (2010). Radiative unresolved spectra atomic model, in Fortov, V.E. et al. , eds, ‘Physics of Extreme States of Matter — 2010’, IPCP, Chernogolovka, pp. 21–24.Google Scholar
Novikov, V.G. & Solomyannaya, A.D. (1998). Spectral characteristics of plasma consistent with radiation. High Temp. 36, 858864.Google Scholar
Oreshkin, V.I., Baksht, R.B., Ratakhin, N.A., Shishlov, A.V., Khishchenko, K.V., Levashov, P. & Beilis, I.I. (2004). The thermal instabilities on electrical explosion of metal wires. Phys. Plasmas 11, 4771.Google Scholar
Ovchinnikov, A.V., Kostenko, O.F., Chefonov, O.V., Rosmej, O.N., Andreev, N.E., Agranat, M.B., Duan, J.L., Liu, J. & Fortov, V.E. (2011). Characteristic X-rays generation under the action of femtosecond laser pulses on nano-structured targets. Laser Parti. Beams 29, 249254.CrossRefGoogle Scholar
Povarnitsyn, M.E., Andreev, N.E., Levashov, P.R., Khishchenko, K.V. & Rosmej, O.N. (2012 a). Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams. Phys. Plasmas 19, 023110.CrossRefGoogle Scholar
Povarnitsyn, M.E., Andreev, N.E., Apfelbaum, E.M., Itina, T.E., Khishchenko, K.V., Kostenko, O.F., Levashov, P.R. & Veysman, M.E. (2012 b). A wide-range model for simulation of pump-probe experiments with metals. Appl. Surf. Sci. 258, 94809483.CrossRefGoogle Scholar
Shemyakin, O.P., Levashov, P.R., Obruchkova, L.R. & Khishchenko, K.V. (2010). Thermal contribution to thermodynamic functions in the Thomas–Fermi model. J. Phys. A: Math. Theor. 43, 335003.CrossRefGoogle Scholar
Sobel'man, I.I., Vainshtein, L.A. & Youkov, E.A. (1995). Excitation of Atoms and Broadening of Spectral Lines, translated from the Russian. Moscow: Springer-Verlag.CrossRefGoogle Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar
Stehlé, C., González, M., Kozlova, M., Rus, B., Mocek, T., Acef, O., Colombier, J.P., Lanz, T., Champion, N., Jakubczak, K., Polan, J., Barroso, P., Bauduin, D., Audit, E., Dostal, J. & Stupka, M. (2010). Experimental study of radiative shocks at PALS facility. Laser Parti. Beams 28, 253261.CrossRefGoogle Scholar
Stuart, B.C., Feit, M.D., Rubenchik, A.M., Shore, B.W. & Perry, M.D. (1995). Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74, 22482251.CrossRefGoogle ScholarPubMed
Veysman, M.E., Agranat, M.B., Andreev, N.E., Ashitkov, S.I., Fortov, V.E., Khishchenko, K.V., Kostenko, O.F., Levashov, P.R., Ovchinnikov, A.V. & Sitnikov, D.S. (2008). Femtosecond optical diagnostics and hydrodynamic simulation of Ag plasma created by laser irradiation of a solid target. J. Phys. B: At., Molec. Opti. Phys. 41, 125704.CrossRefGoogle Scholar
Zastrau, U., Audebert, P., Bernshtam, V., Brambrink, E., Kämpfer, T., Kroupp, E., Loetzsch, R., Maron, Y., Ralchenko, Y., Reinholz, H., Röpke, G., Sengebusch, A., Stambulchik, E., Uschmann, I., Weingarten, L. & Förster, E. (2010). Temperature and Kα-yield radial distributions in laser-produced solid-density plasmas imaged with ultrahigh-resolution X-ray spectroscopy. Phys. Rev. E 81, 026406.CrossRefGoogle ScholarPubMed