Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T19:43:54.276Z Has data issue: false hasContentIssue false

Ion-beam-driven plasma described by rate equations

Published online by Cambridge University Press:  09 March 2009

B. Kärcher
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, FRG
J. Meyer-Ter-Vehn
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, FRG

Abstract

Ionization distributions and radiation spectra of a dense plasma driven by intense ion beams are studied by solving stationary rate equations. Expressions for the rate coefficients are derived. Optically thin plasmas of hydrogen and carbon are considered neglecting hydrodynamic motion. Results on level populations versus temperature, on power balance and equilibrium states, and also on emission spectra are given. In particular, the transition from beam-determined plasma states to thermal equilibrium states is discussed. Beam parameters are chosen close to those in experiments now being planned.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions (Dover, New York).Google Scholar
Basko, M. M. 1984 Sov. J. Plasma Phys. 10, 689.Google Scholar
Bethe, H. A. 1930 Ann. Phys. (Leipzig) 5, 325.Google Scholar
Betz, H.-D. 1983 Appl. At. Collision Phys. 4, 1.Google Scholar
Drawin, H. W. & Emard, F. 1977 Physica 85C, 333.Google Scholar
Jacobs, V. L. et al. 1977 Astrophys. J. 211, 605.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1965 Quantum Mechanics (Pergamon, Oxford).Google Scholar
Lotz, W. 1965 Z. Phys. 206, 205.CrossRefGoogle Scholar
Mahn, C. 1967 Institut für Plasmaphysik Report No. 3/52 (Garching, FRG).Google Scholar
Mehlhorn, T. A. 1981 J. Appl. Phys. 52, 6522.Google Scholar
Meyer-Ter-Vehn, J. et al. 1990 Phys. Fluids B 2, 1313.Google Scholar
Mihalas, D. 1978 Stellar Atmospheres (Freeman, San Francisco).Google Scholar
More, R. M. 1982 J. Quant. Spectrosc. Radiat. Transfer 27, 345.CrossRefGoogle Scholar
Murakami, M., Meyer-Ter-Vehn, J. & Ramis, R. 1990 J. X-ray Set. Tech., 2, 127.Google Scholar
Nardi, E., Peleg, E. & Zinamon, Z. 1978 Phys. Fluids 21, 574.Google Scholar
Numerical Algorithms Group 1987 NAG Fortran Library Manual-Mark 12, Oxford, U.K.Google Scholar
Peter, Th. 1988 Max-Planck-Institut für Quantenoptik Report No. 137.Google Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1990 Phys. Rev. A (submitted).Google Scholar
Seaton, M. J. 1959 Mon. Not. R. Astron. Soc. 119, 81.Google Scholar
Sobelman, I. I., Vainshtein, L. A. & Yukov, E. A. 1981 Excitation of Atoms and Broadening of Spectral Lines, Vol. 7 of Springer Series in Chemical Physics (Springer-Verlag, Berlin).Google Scholar
Spitzer, L. 1956 Physics of Fully Ionized Gases (Interscience, New York).Google Scholar
VanDevender, J. P. & Cook, D. L. 1986 Science 232, 831.Google Scholar
Wiese, W. L., Smith, M. W. & Glennon, B. M. 1966 Atomic Transition Probabilities–Hydrogen through Neon (NBS, Washington, D.C.), Vol. I.Google Scholar
Zeldovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York), Vol. I.Google Scholar