Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T22:00:48.550Z Has data issue: false hasContentIssue false

Ion acceleration in overdense plasma by short laser pulse

Published online by Cambridge University Press:  01 June 2004

O. SHOROKHOV
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Germany
A. PUKHOV
Affiliation:
Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Germany

Abstract

We consider ion acceleration at the front surface of overdense plasma by a short laser pulse. In this configuration, the laser ponderomotive pressure pushes the background electrons, and a double layer is produced at the boundary of the overdense region. The ions are accelerated by the electrostatic field of the double layer. If the laser intensity is so large that the plasma becomes relativistically transparent, then ion trapping in the running double layer and acceleration to relativistic energies is possible. We study this physics using one-dimensional particle-in-cell simulations. Ion acceleration in one- and two-component plasmas is considered. It is shown that the proton acceleration is more effective when they represent only a small dope to the heavy background ions.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S. (2002). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 22142220.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett 84, 670673.Google Scholar
Esarey, E. & Pilloff, M. (1995). Trapping and acceleration in nonlinear plasma waves. Phys. Plasmas 2, 14321436.Google Scholar
Esirkepov, T.Zh., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett 89, 175003.Google Scholar
Esirkepov, T.Zh., Sentoku, Y., Mima, K., Nishihara, K., Califano, F., Pegoraro, F., Naumova, N.M., Bulanov, S.V., Ueshima, Y., Liseikina, T.V., Vshivkov, V.A. & Kato, Y. (1999). Ion acceleration by superintense laser pulses in plasmas. JETP Lett 70, 8289.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett 89, 085002.Google Scholar
Kraft, G. (2001). What we can learn from heavy ion therapy for radioprotection in space. Physica Medica XVII, Suppl. 1, 13.Google Scholar
Krushelnick, K., Clark, E.L., Zepf, M., Davies, J.R., Beg, F.N., Machacek, A., Santala, M.I.K., Tatarakis, M., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic proton production from relativistic laser interaction with high intensity plasmas. Phys. Plasmas 7, 20552061.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Yu. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett 84, 41084111.Google Scholar
Pukhov, A. (1999). Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys 61, 425433.Google Scholar
Pukhov, A. (2001). Three-dimentional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett 86, 35623565.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 79, 39753978.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1997). Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets. Phys, Rev. Lett 79, 26862689.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1998). Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations. Phys. Plasmas 5, 18801886.Google Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.-C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. STAB 5, 061301.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2000). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett 86, 436439.Google Scholar
Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R. & Clarke, R.J. (2001). Observation of a hot high-current electron beam from a self-modulated laser Wakefield accelerator. Phys. Rev. Lett 86, 12271230.Google Scholar
Sentoku, Y., Liseikina, T.V., Esirkepov, T.Zh., Califano, F., Naumova, N.M., Ueshima, Y., Vshivkov, V.A., Kato, Y., Mima, K., Nishihara, K., Pegoraro, F. & Bulanov, S.V. (2000). High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas. Phys. Rev. E 62, 72717281.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy beams from petawatt-laser irradiation of solids. Phys. Rev. Lett 85, 29452948.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett 69, 13831386.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.Google Scholar
Zepf, M., Clark, E.L., Beg, F.N., Clarke, R.J., Dangor, A.E., Gopal, A., Krushelnick, K., Norreys, P.A., Tatarakis, M., Wagner, U. & Wei, M.S. (2003). Proton acceleration from high-intensity laser interactions with thin foil targets. Phys. Rev. Lett 90, 064801.Google Scholar